Normalized defining polynomial
\( x^{16} - 4 x^{15} + 8 x^{14} - 12 x^{13} + 14 x^{12} - 6 x^{11} - 16 x^{10} + 46 x^{9} - 67 x^{8} + 62 x^{7} - 22 x^{6} - 36 x^{5} + 77 x^{4} - 78 x^{3} + 50 x^{2} - 20 x + 4 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(18297527052795904=2^{22}\cdot 257^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $10.38$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 257$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{2} a^{14} - \frac{1}{2} a^{6} - \frac{1}{2} a^{2}$, $\frac{1}{134518} a^{15} + \frac{8987}{134518} a^{14} + \frac{12033}{67259} a^{13} - \frac{31034}{67259} a^{12} + \frac{30904}{67259} a^{11} + \frac{10932}{67259} a^{10} + \frac{235}{653} a^{9} - \frac{22946}{67259} a^{8} - \frac{48333}{134518} a^{7} + \frac{65717}{134518} a^{6} - \frac{4395}{67259} a^{5} + \frac{32829}{67259} a^{4} + \frac{66171}{134518} a^{3} - \frac{29731}{134518} a^{2} + \frac{21577}{67259} a + \frac{23841}{67259}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{92401}{134518} a^{15} - \frac{154061}{67259} a^{14} + \frac{271740}{67259} a^{13} - \frac{388723}{67259} a^{12} + \frac{415954}{67259} a^{11} - \frac{35189}{67259} a^{10} - \frac{7157}{653} a^{9} + \frac{1653586}{67259} a^{8} - \frac{4189991}{134518} a^{7} + \frac{1667585}{67259} a^{6} - \frac{127071}{67259} a^{5} - \frac{1629946}{67259} a^{4} + \frac{5131601}{134518} a^{3} - \frac{2142426}{67259} a^{2} + \frac{1188502}{67259} a - \frac{338081}{67259} \) (order $4$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 50.6977746509 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_2^3:S_4$ (as 16T747):
| A solvable group of order 384 |
| The 26 conjugacy class representatives for $C_2\times C_2^3:S_4$ |
| Character table for $C_2\times C_2^3:S_4$ is not computed |
Intermediate fields
| \(\Q(\sqrt{-1}) \), 4.0.257.1, 8.0.16908544.2, 8.0.4227136.1, 8.0.16908544.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.4.4.1 | $x^{4} + 8 x^{2} + 4$ | $2$ | $2$ | $4$ | $C_2^2$ | $[2]^{2}$ |
| 2.12.18.61 | $x^{12} - 6 x^{10} + 2 x^{8} - 4 x^{7} + 8 x^{5} + 8 x^{4} + 8 x^{3} + 8$ | $4$ | $3$ | $18$ | $C_2^2 \times A_4$ | $[2, 2, 2]^{6}$ | |
| 257 | Data not computed | ||||||