Normalized defining polynomial
\( x^{16} - 6 x^{15} + 15 x^{14} - 14 x^{13} - 48 x^{12} + 294 x^{11} - 273 x^{10} - 506 x^{9} + 1021 x^{8} - 2042 x^{7} + 5757 x^{6} - 3358 x^{5} + 3832 x^{4} - 1080 x^{3} + 1297 x^{2} - 1258 x + 347 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1824496001102094673202161=13^{12}\cdot 23^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $32.83$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $13, 23$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{5} - \frac{1}{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{6} - \frac{1}{2} a$, $\frac{1}{46} a^{12} - \frac{5}{23} a^{11} - \frac{1}{23} a^{10} - \frac{1}{23} a^{9} - \frac{11}{46} a^{8} + \frac{8}{23} a^{7} - \frac{7}{23} a^{6} + \frac{1}{46} a^{5} - \frac{5}{46} a^{4} - \frac{9}{46} a^{3} - \frac{9}{46} a^{2} + \frac{3}{46} a - \frac{5}{46}$, $\frac{1}{46} a^{13} - \frac{5}{23} a^{11} + \frac{1}{46} a^{10} - \frac{4}{23} a^{9} - \frac{1}{23} a^{8} - \frac{15}{46} a^{7} + \frac{11}{23} a^{6} - \frac{9}{23} a^{5} - \frac{13}{46} a^{4} + \frac{8}{23} a^{3} - \frac{9}{23} a^{2} - \frac{21}{46} a - \frac{2}{23}$, $\frac{1}{47702} a^{14} - \frac{83}{23851} a^{13} - \frac{365}{47702} a^{12} + \frac{2479}{23851} a^{11} - \frac{1434}{23851} a^{10} - \frac{2087}{23851} a^{9} - \frac{1137}{47702} a^{8} - \frac{15151}{47702} a^{7} - \frac{59}{782} a^{6} + \frac{7151}{47702} a^{5} - \frac{590}{23851} a^{4} + \frac{9610}{23851} a^{3} + \frac{3725}{23851} a^{2} + \frac{2325}{47702} a + \frac{817}{23851}$, $\frac{1}{36988555738158498711122} a^{15} + \frac{190443803596830956}{18494277869079249355561} a^{14} - \frac{173501849003199993101}{36988555738158498711122} a^{13} - \frac{179708510854491660136}{18494277869079249355561} a^{12} - \frac{1822522680484952063124}{18494277869079249355561} a^{11} - \frac{721371948592066579713}{36988555738158498711122} a^{10} - \frac{1230686104745074327935}{18494277869079249355561} a^{9} + \frac{5526581396530102493893}{36988555738158498711122} a^{8} - \frac{8455616457967887096251}{18494277869079249355561} a^{7} - \frac{6446812616998567260859}{18494277869079249355561} a^{6} - \frac{6669318023107941862549}{36988555738158498711122} a^{5} - \frac{1421177712548160688943}{18494277869079249355561} a^{4} - \frac{2689324961980478147217}{36988555738158498711122} a^{3} + \frac{8532625476830609028001}{18494277869079249355561} a^{2} - \frac{361367100148242368920}{804099037786054319807} a - \frac{3290105974688831506030}{18494277869079249355561}$
Class group and class number
$C_{6}$, which has order $6$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 64747.4698794 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 16 |
| The 7 conjugacy class representatives for $QD_{16}$ |
| Character table for $QD_{16}$ |
Intermediate fields
| \(\Q(\sqrt{-299}) \), \(\Q(\sqrt{13}) \), \(\Q(\sqrt{-23}) \), \(\Q(\sqrt{13}, \sqrt{-23})\), 4.2.3887.1 x2, 4.0.6877.1 x2, 8.0.7992538801.1, 8.2.58727785103.1 x4 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 8 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/17.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $13$ | 13.4.3.1 | $x^{4} - 13$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 13.4.3.1 | $x^{4} - 13$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 13.4.3.1 | $x^{4} - 13$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 13.4.3.1 | $x^{4} - 13$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| $23$ | 23.2.1.2 | $x^{2} + 46$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 23.2.1.2 | $x^{2} + 46$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 23.2.1.2 | $x^{2} + 46$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 23.2.1.2 | $x^{2} + 46$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 23.2.1.2 | $x^{2} + 46$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 23.2.1.2 | $x^{2} + 46$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 23.2.1.2 | $x^{2} + 46$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 23.2.1.2 | $x^{2} + 46$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |