Normalized defining polynomial
\( x^{16} + 976 x^{14} + 379664 x^{12} + 74539072 x^{10} + 7707154739 x^{8} + 400872052024 x^{6} + 9436607057716 x^{4} + 76635733034448 x^{2} + 156220976347921 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(182405472588468433947695572320256000000000000=2^{48}\cdot 5^{12}\cdot 61^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $583.87$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 61$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(4880=2^{4}\cdot 5\cdot 61\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{4880}(1,·)$, $\chi_{4880}(2307,·)$, $\chi_{4880}(3283,·)$, $\chi_{4880}(1109,·)$, $\chi_{4880}(987,·)$, $\chi_{4880}(4381,·)$, $\chi_{4880}(487,·)$, $\chi_{4880}(3049,·)$, $\chi_{4880}(1963,·)$, $\chi_{4880}(367,·)$, $\chi_{4880}(2929,·)$, $\chi_{4880}(3061,·)$, $\chi_{4880}(1463,·)$, $\chi_{4880}(121,·)$, $\chi_{4880}(2429,·)$, $\chi_{4880}(1343,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{61} a^{4}$, $\frac{1}{61} a^{5}$, $\frac{1}{61} a^{6}$, $\frac{1}{61} a^{7}$, $\frac{1}{40931} a^{8} - \frac{3}{671} a^{6} + \frac{5}{671} a^{4} - \frac{1}{11} a^{2} + \frac{4}{11}$, $\frac{1}{40931} a^{9} - \frac{3}{671} a^{7} + \frac{5}{671} a^{5} - \frac{1}{11} a^{3} + \frac{4}{11} a$, $\frac{1}{736717069} a^{10} + \frac{10}{12077329} a^{8} + \frac{74131}{12077329} a^{6} + \frac{6060}{12077329} a^{4} + \frac{57027}{197989} a^{2} - \frac{68009}{197989}$, $\frac{1}{2474632634771} a^{11} + \frac{504582}{2474632634771} a^{9} + \frac{306831088}{40567748111} a^{7} - \frac{258027604}{40567748111} a^{5} - \frac{226352394}{665045051} a^{3} - \frac{110905851}{665045051} a$, $\frac{1}{150952590721031} a^{12} + \frac{12}{2474632634771} a^{10} - \frac{500617}{2474632634771} a^{8} - \frac{4024456}{40567748111} a^{6} - \frac{130711587}{40567748111} a^{4} + \frac{10263930}{60458641} a^{2} + \frac{89633}{197989}$, $\frac{1}{150952590721031} a^{13} - \frac{6555601}{2474632634771} a^{9} + \frac{304272794}{40567748111} a^{7} + \frac{305439457}{40567748111} a^{5} + \frac{168951754}{665045051} a^{3} + \frac{301857357}{665045051} a$, $\frac{1}{150952590721031} a^{14} + \frac{1167}{2474632634771} a^{10} + \frac{9195821}{2474632634771} a^{8} + \frac{35899861}{40567748111} a^{6} - \frac{201059597}{40567748111} a^{4} - \frac{266156261}{665045051} a^{2} - \frac{28942}{197989}$, $\frac{1}{150952590721031} a^{15} + \frac{24935037}{2474632634771} a^{9} - \frac{60366474}{40567748111} a^{7} + \frac{14498014}{40567748111} a^{5} - \frac{75339069}{665045051} a^{3} + \frac{69337481}{665045051} a$
Class group and class number
$C_{2}\times C_{20}\times C_{20}\times C_{1394900}$, which has order $1115920000$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 4361877.087043648 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| An abelian group of order 16 |
| The 16 conjugacy class representatives for $C_4^2$ |
| Character table for $C_4^2$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.1.0.1}{1} }^{16}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.1.0.1}{1} }^{16}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 5 | Data not computed | ||||||
| $61$ | 61.4.3.4 | $x^{4} + 488$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 61.4.3.4 | $x^{4} + 488$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 61.4.3.4 | $x^{4} + 488$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 61.4.3.4 | $x^{4} + 488$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |