Normalized defining polynomial
\( x^{16} - 164 x^{14} + 15082 x^{12} - 777952 x^{10} + 27658415 x^{8} - 630293848 x^{6} + 15664045662 x^{4} - 152109439596 x^{2} + 2386255652001 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(182405472588468433947695572320256000000000000=2^{48}\cdot 5^{12}\cdot 61^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $583.87$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 61$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(4880=2^{4}\cdot 5\cdot 61\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{4880}(1,·)$, $\chi_{4880}(2307,·)$, $\chi_{4880}(2561,·)$, $\chi_{4880}(843,·)$, $\chi_{4880}(2317,·)$, $\chi_{4880}(1231,·)$, $\chi_{4880}(853,·)$, $\chi_{4880}(599,·)$, $\chi_{4880}(4637,·)$, $\chi_{4880}(3427,·)$, $\chi_{4880}(3173,·)$, $\chi_{4880}(3049,·)$, $\chi_{4880}(1963,·)$, $\chi_{4880}(1719,·)$, $\chi_{4880}(111,·)$, $\chi_{4880}(489,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $\frac{1}{3} a^{3} - \frac{1}{3} a$, $\frac{1}{3} a^{4} - \frac{1}{3} a^{2}$, $\frac{1}{3} a^{5} - \frac{1}{3} a$, $\frac{1}{9} a^{6} + \frac{1}{9} a^{4} - \frac{2}{9} a^{2}$, $\frac{1}{27} a^{7} + \frac{4}{27} a^{5} + \frac{4}{27} a^{3} - \frac{1}{3} a$, $\frac{1}{1080} a^{8} - \frac{1}{54} a^{7} - \frac{1}{540} a^{6} - \frac{2}{27} a^{5} - \frac{101}{1080} a^{4} - \frac{2}{27} a^{3} + \frac{17}{180} a^{2} + \frac{1}{6} a + \frac{13}{40}$, $\frac{1}{3240} a^{9} - \frac{7}{540} a^{7} - \frac{29}{360} a^{5} - \frac{1}{6} a^{4} - \frac{29}{1620} a^{3} + \frac{1}{6} a^{2} - \frac{41}{360} a - \frac{1}{2}$, $\frac{1}{16200} a^{10} - \frac{23}{1080} a^{6} - \frac{1}{6} a^{5} + \frac{109}{810} a^{4} - \frac{1}{6} a^{3} + \frac{29}{120} a^{2} - \frac{1}{6} a + \frac{11}{100}$, $\frac{1}{210600} a^{11} + \frac{1}{21060} a^{9} - \frac{19}{1560} a^{7} - \frac{1}{18} a^{6} - \frac{2383}{21060} a^{5} - \frac{1}{18} a^{4} + \frac{3547}{42120} a^{3} - \frac{7}{18} a^{2} + \frac{1147}{5850} a$, $\frac{1}{6696448200} a^{12} - \frac{12014}{837056025} a^{10} + \frac{51517}{446429880} a^{8} - \frac{1}{54} a^{7} - \frac{5621969}{334822410} a^{6} + \frac{5}{54} a^{5} + \frac{56877611}{1339289640} a^{4} + \frac{5}{54} a^{3} - \frac{86104961}{372024900} a^{2} + \frac{1}{3} a - \frac{35423}{176650}$, $\frac{1}{6696448200} a^{13} - \frac{721}{6696448200} a^{11} - \frac{5669}{111607470} a^{9} - \frac{4458977}{1339289640} a^{7} - \frac{45727697}{669644820} a^{5} - \frac{36234749}{248016600} a^{3} - \frac{41206507}{82672200} a$, $\frac{1}{3657248081701297200} a^{14} - \frac{1}{13392896400} a^{13} + \frac{122525557}{1828624040850648600} a^{12} + \frac{721}{13392896400} a^{11} + \frac{464147009861}{81272179593362160} a^{10} + \frac{5669}{223214940} a^{9} + \frac{65556563201399}{146289923268051888} a^{8} - \frac{45144343}{2678579280} a^{7} - \frac{22894190686219093}{731449616340259440} a^{6} - \frac{53478943}{1339289640} a^{5} + \frac{12872349378766289}{1219082693900432400} a^{4} - \frac{508451}{496033200} a^{3} + \frac{5662876257389903}{16931704081950450} a^{2} - \frac{13908293}{165344400} a - \frac{2508385551389}{5937042851440}$, $\frac{1}{16095548807567408977200} a^{15} - \frac{196641103169}{16095548807567408977200} a^{13} - \frac{1}{13392896400} a^{12} - \frac{5692724471862721}{8047774403783704488600} a^{11} - \frac{317249}{13392896400} a^{10} - \frac{21019118781974017}{643821952302696359088} a^{9} + \frac{90461}{223214940} a^{8} + \frac{11819304187162350679}{804777440378370448860} a^{7} + \frac{48529619}{2678579280} a^{6} - \frac{1332415130996073247603}{16095548807567408977200} a^{5} - \frac{36235139}{267857928} a^{4} - \frac{115444319477203612037}{1788394311951934330800} a^{3} + \frac{62669257}{1488099600} a^{2} + \frac{29586222639491821}{212297520412147950} a + \frac{293611}{1413200}$
Class group and class number
$C_{2}\times C_{2}\times C_{520}\times C_{3328520}$, which has order $6923321600$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 773433248.8138483 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| An abelian group of order 16 |
| The 16 conjugacy class representatives for $C_4^2$ |
| Character table for $C_4^2$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.1.0.1}{1} }^{16}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.1.0.1}{1} }^{16}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $5$ | 5.8.6.2 | $x^{8} + 15 x^{4} + 100$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |
| 5.8.6.2 | $x^{8} + 15 x^{4} + 100$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| 61 | Data not computed | ||||||