Properties

Label 16.0.18240547258...000.20
Degree $16$
Signature $[0, 8]$
Discriminant $2^{48}\cdot 5^{12}\cdot 61^{12}$
Root discriminant $583.87$
Ramified primes $2, 5, 61$
Class number $1331408000$ (GRH)
Class group $[2, 2, 20, 16642600]$ (GRH)
Galois group $C_4^2$ (as 16T4)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![202716958081, 0, 8014083537528, 0, 2044575845776, 0, 153444603544, 0, 4316728379, 0, 55785232, 0, 346724, 0, 976, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^16 + 976*x^14 + 346724*x^12 + 55785232*x^10 + 4316728379*x^8 + 153444603544*x^6 + 2044575845776*x^4 + 8014083537528*x^2 + 202716958081)
 
gp: K = bnfinit(x^16 + 976*x^14 + 346724*x^12 + 55785232*x^10 + 4316728379*x^8 + 153444603544*x^6 + 2044575845776*x^4 + 8014083537528*x^2 + 202716958081, 1)
 

Normalized defining polynomial

\( x^{16} + 976 x^{14} + 346724 x^{12} + 55785232 x^{10} + 4316728379 x^{8} + 153444603544 x^{6} + 2044575845776 x^{4} + 8014083537528 x^{2} + 202716958081 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $16$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 8]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(182405472588468433947695572320256000000000000=2^{48}\cdot 5^{12}\cdot 61^{12}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $583.87$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 5, 61$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is Galois and abelian over $\Q$.
Conductor:  \(4880=2^{4}\cdot 5\cdot 61\)
Dirichlet character group:    $\lbrace$$\chi_{4880}(1,·)$, $\chi_{4880}(4747,·)$, $\chi_{4880}(3783,·)$, $\chi_{4880}(843,·)$, $\chi_{4880}(1109,·)$, $\chi_{4880}(4381,·)$, $\chi_{4880}(3427,·)$, $\chi_{4880}(3049,·)$, $\chi_{4880}(2927,·)$, $\chi_{4880}(2929,·)$, $\chi_{4880}(4403,·)$, $\chi_{4880}(3061,·)$, $\chi_{4880}(2807,·)$, $\chi_{4880}(121,·)$, $\chi_{4880}(2429,·)$, $\chi_{4880}(3903,·)$$\rbrace$
This is a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{61} a^{4}$, $\frac{1}{61} a^{5}$, $\frac{1}{61} a^{6}$, $\frac{1}{61} a^{7}$, $\frac{1}{3721} a^{8}$, $\frac{1}{40931} a^{9} - \frac{1}{671} a^{7} - \frac{5}{671} a^{5} + \frac{5}{11} a^{3} + \frac{3}{11} a$, $\frac{1}{1186999} a^{10} + \frac{27}{1186999} a^{8} + \frac{94}{19459} a^{6} - \frac{14}{19459} a^{4} - \frac{30}{319} a^{2} - \frac{13}{29}$, $\frac{1}{1186999} a^{11} - \frac{2}{1186999} a^{9} + \frac{123}{19459} a^{7} + \frac{131}{19459} a^{5} + \frac{144}{319} a^{3} + \frac{89}{319} a$, $\frac{1}{28166299271} a^{12} - \frac{13}{461742611} a^{10} - \frac{16334}{461742611} a^{8} + \frac{1011}{7569551} a^{6} - \frac{26141}{7569551} a^{4} + \frac{13208}{124091} a^{2} + \frac{2229}{11281}$, $\frac{1}{309829291981} a^{13} + \frac{1932}{5079168721} a^{11} - \frac{42786}{5079168721} a^{9} + \frac{635081}{83265061} a^{7} - \frac{403082}{83265061} a^{5} - \frac{191795}{1365001} a^{3} - \frac{366426}{1365001} a$, $\frac{1}{97988227731829064881471} a^{14} + \frac{851338288931}{97988227731829064881471} a^{12} - \frac{98270069960443}{1606364389046378112811} a^{10} - \frac{70194160829050865}{1606364389046378112811} a^{8} - \frac{126461748215044647}{26333842443383247751} a^{6} + \frac{146294167348893757}{26333842443383247751} a^{4} - \frac{177700703431881382}{431702335137430291} a^{2} - \frac{522397058440039}{3567787893697771}$, $\frac{1}{97988227731829064881471} a^{15} - \frac{805432702}{809820063899413759351} a^{13} - \frac{578044401556890}{1606364389046378112811} a^{11} + \frac{6940078793486416}{1606364389046378112811} a^{9} - \frac{170111408168647303}{26333842443383247751} a^{7} + \frac{78088094754021406}{26333842443383247751} a^{5} - \frac{36325408218575017}{431702335137430291} a^{3} + \frac{90931612822498152}{431702335137430291} a$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{2}\times C_{2}\times C_{20}\times C_{16642600}$, which has order $1331408000$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $7$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 8592043.71726574 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_4^2$ (as 16T4):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
An abelian group of order 16
The 16 conjugacy class representatives for $C_4^2$
Character table for $C_4^2$

Intermediate fields

\(\Q(\sqrt{122}) \), \(\Q(\sqrt{610}) \), \(\Q(\sqrt{5}) \), 4.0.11621427200.4, \(\Q(\sqrt{5}, \sqrt{122})\), 4.0.464857088.4, 4.0.58107136000.7, 4.0.58107136000.8, 4.4.7442000.1, 4.4.8000.1, 8.0.135057570164899840000.3, 8.0.3376439254122496000000.1, 8.8.14178141184000000.2

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ R ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/11.1.0.1}{1} }^{16}$ ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/41.1.0.1}{1} }^{16}$ ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
2Data not computed
5Data not computed
$61$61.8.6.2$x^{8} + 183 x^{4} + 14884$$4$$2$$6$$C_4\times C_2$$[\ ]_{4}^{2}$
61.8.6.2$x^{8} + 183 x^{4} + 14884$$4$$2$$6$$C_4\times C_2$$[\ ]_{4}^{2}$