Normalized defining polynomial
\( x^{16} - 8 x^{15} + 2 x^{14} + 104 x^{13} - 102 x^{12} - 605 x^{11} + 814 x^{10} + 1632 x^{9} - 3178 x^{8} - 1387 x^{7} + 6695 x^{6} - 1880 x^{5} - 6521 x^{4} + 5025 x^{3} + 1980 x^{2} - 3456 x + 1053 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(182400992338192624135120813=13^{5}\cdot 53^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $43.78$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $13, 53$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{53} a^{12} + \frac{16}{53} a^{11} + \frac{11}{53} a^{10} + \frac{2}{53} a^{9} - \frac{25}{53} a^{8} + \frac{10}{53} a^{7} + \frac{21}{53} a^{6} + \frac{5}{53} a^{5} + \frac{3}{53} a^{4} - \frac{20}{53} a^{3} + \frac{2}{53} a^{2} - \frac{22}{53} a + \frac{24}{53}$, $\frac{1}{159} a^{13} + \frac{1}{159} a^{12} - \frac{70}{159} a^{11} - \frac{4}{159} a^{10} + \frac{17}{53} a^{9} + \frac{67}{159} a^{8} - \frac{23}{159} a^{7} - \frac{15}{53} a^{6} - \frac{19}{159} a^{5} + \frac{41}{159} a^{4} - \frac{16}{159} a^{3} + \frac{1}{159} a^{2} - \frac{17}{159} a - \frac{14}{53}$, $\frac{1}{954} a^{14} + \frac{1}{954} a^{13} + \frac{1}{477} a^{12} - \frac{283}{954} a^{11} - \frac{37}{318} a^{10} - \frac{425}{954} a^{9} - \frac{196}{477} a^{8} + \frac{13}{318} a^{7} - \frac{415}{954} a^{6} - \frac{235}{954} a^{5} + \frac{359}{954} a^{4} - \frac{4}{477} a^{3} - \frac{16}{477} a^{2} - \frac{65}{318} a + \frac{33}{106}$, $\frac{1}{425261510914675266} a^{15} - \frac{208452382989983}{425261510914675266} a^{14} - \frac{555417197766566}{212630755457337633} a^{13} + \frac{1562048295885563}{425261510914675266} a^{12} - \frac{55022912106750859}{141753836971558422} a^{11} + \frac{167135206925300227}{425261510914675266} a^{10} + \frac{2958702570852269}{16356211958256741} a^{9} - \frac{58704430026727097}{141753836971558422} a^{8} + \frac{141394547380528907}{425261510914675266} a^{7} + \frac{13816740842113715}{425261510914675266} a^{6} - \frac{51747267243682081}{425261510914675266} a^{5} - \frac{6948349252581460}{212630755457337633} a^{4} - \frac{2461919671744346}{12507691497490449} a^{3} + \frac{402156904221355}{10904141305504494} a^{2} + \frac{22343889689294263}{47251278990519474} a + \frac{155007206630958}{605785628083583}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1312913.5276 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 1024 |
| The 34 conjugacy class representatives for t16n1281 |
| Character table for t16n1281 is not computed |
Intermediate fields
| \(\Q(\sqrt{53}) \), 4.0.148877.1, 8.0.3745777030801.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }{,}\,{\href{/LocalNumberField/2.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }{,}\,{\href{/LocalNumberField/5.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }^{2}$ | R | ${\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }{,}\,{\href{/LocalNumberField/41.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{4}$ | R | ${\href{/LocalNumberField/59.8.0.1}{8} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $13$ | $\Q_{13}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{13}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{13}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{13}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 13.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 13.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 13.4.2.1 | $x^{4} + 39 x^{2} + 676$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 13.4.3.1 | $x^{4} - 13$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| $53$ | 53.8.6.1 | $x^{8} - 1643 x^{4} + 1755625$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |
| 53.8.6.1 | $x^{8} - 1643 x^{4} + 1755625$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |