Normalized defining polynomial
\( x^{16} - 3 x^{15} + 3 x^{14} - 7 x^{13} + 14 x^{12} - 7 x^{11} + 35 x^{10} - 52 x^{9} - 12 x^{8} - 9 x^{7} + 119 x^{6} + 301 x^{5} + 364 x^{4} + 315 x^{3} + 171 x^{2} + 54 x + 9 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(18226469195621535744=2^{12}\cdot 3^{8}\cdot 7^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $15.99$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2}$, $\frac{1}{6} a^{11} - \frac{1}{2} a^{9} - \frac{1}{6} a^{7} - \frac{1}{6} a^{6} - \frac{1}{6} a^{5} - \frac{1}{3} a^{4} - \frac{1}{6} a^{3} + \frac{1}{3} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{12} a^{12} - \frac{1}{12} a^{11} - \frac{1}{4} a^{10} - \frac{1}{4} a^{9} - \frac{1}{12} a^{8} - \frac{1}{2} a^{6} - \frac{1}{12} a^{5} + \frac{1}{12} a^{4} - \frac{1}{4} a^{3} + \frac{1}{12} a^{2} + \frac{1}{4}$, $\frac{1}{12} a^{13} + \frac{1}{6} a^{9} - \frac{1}{12} a^{8} + \frac{1}{6} a^{7} - \frac{5}{12} a^{6} - \frac{1}{3} a^{5} - \frac{1}{3} a^{4} - \frac{1}{4} a^{2} + \frac{1}{4} a - \frac{1}{4}$, $\frac{1}{216} a^{14} + \frac{5}{216} a^{13} - \frac{1}{36} a^{11} - \frac{17}{108} a^{10} - \frac{7}{72} a^{9} + \frac{11}{72} a^{8} + \frac{35}{216} a^{7} - \frac{71}{216} a^{6} + \frac{13}{36} a^{5} - \frac{23}{54} a^{4} + \frac{11}{24} a^{3} - \frac{1}{3} a^{2} + \frac{1}{12} a - \frac{5}{24}$, $\frac{1}{41252735592} a^{15} + \frac{31150517}{20626367796} a^{14} - \frac{447468851}{41252735592} a^{13} + \frac{113481049}{3437727966} a^{12} - \frac{1108913333}{20626367796} a^{11} + \frac{8354902291}{41252735592} a^{10} - \frac{115394299}{2291818644} a^{9} - \frac{10110970187}{20626367796} a^{8} - \frac{1514980751}{5156591949} a^{7} + \frac{12170476667}{41252735592} a^{6} - \frac{1918420237}{5156591949} a^{5} - \frac{16366308175}{41252735592} a^{4} + \frac{2026709297}{4583637288} a^{3} + \frac{57285023}{572954661} a^{2} - \frac{436717279}{4583637288} a - \frac{1263785047}{4583637288}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{1039523}{7916472} a^{15} - \frac{11897951}{23749416} a^{14} + \frac{4653719}{5937354} a^{13} - \frac{164850}{109951} a^{12} + \frac{2961091}{989559} a^{11} - \frac{75869143}{23749416} a^{10} + \frac{54194945}{7916472} a^{9} - \frac{31995623}{2638824} a^{8} + \frac{177338813}{23749416} a^{7} - \frac{69913669}{11874708} a^{6} + \frac{79590245}{3958236} a^{5} + \frac{569641345}{23749416} a^{4} + \frac{32545709}{1319412} a^{3} + \frac{5444831}{329853} a^{2} + \frac{9002555}{2638824} a + \frac{1484351}{1319412} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 4928.02836346 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_8:C_2^2$ (as 16T45):
| A solvable group of order 32 |
| The 11 conjugacy class representatives for $C_8:C_2^2$ |
| Character table for $C_8:C_2^2$ |
Intermediate fields
| \(\Q(\sqrt{21}) \), \(\Q(\sqrt{-7}) \), \(\Q(\sqrt{-3}) \), 4.0.1372.1, 4.0.12348.1, \(\Q(\sqrt{-3}, \sqrt{-7})\), 8.0.152473104.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 8 siblings: | data not computed |
| Degree 16 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.4.4.2 | $x^{4} - x^{2} + 5$ | $2$ | $2$ | $4$ | $C_4$ | $[2]^{2}$ |
| 2.4.0.1 | $x^{4} - x + 1$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 2.8.8.1 | $x^{8} + 28 x^{4} + 144$ | $2$ | $4$ | $8$ | $C_4\times C_2$ | $[2]^{4}$ | |
| $3$ | 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $7$ | 7.8.7.1 | $x^{8} + 14$ | $8$ | $1$ | $7$ | $D_{8}$ | $[\ ]_{8}^{2}$ |
| 7.8.7.1 | $x^{8} + 14$ | $8$ | $1$ | $7$ | $D_{8}$ | $[\ ]_{8}^{2}$ |