Normalized defining polynomial
\( x^{16} + 4 x^{14} + 14 x^{12} + 56 x^{10} + 105 x^{8} + 196 x^{6} + 392 x^{4} + 144 x^{2} + 16 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(182059119829942534144=2^{28}\cdot 7^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $18.46$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 7$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{2}$, $\frac{1}{4} a^{7} + \frac{1}{4} a^{3} - \frac{1}{2} a$, $\frac{1}{4} a^{8} - \frac{1}{4} a^{4}$, $\frac{1}{8} a^{9} - \frac{1}{8} a^{8} - \frac{1}{8} a^{5} + \frac{1}{8} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{16} a^{10} + \frac{1}{16} a^{8} - \frac{1}{8} a^{7} - \frac{1}{16} a^{6} - \frac{1}{4} a^{5} + \frac{3}{16} a^{4} + \frac{1}{8} a^{3} + \frac{1}{4} a - \frac{1}{4}$, $\frac{1}{16} a^{11} - \frac{1}{16} a^{9} - \frac{1}{16} a^{7} - \frac{1}{4} a^{6} - \frac{3}{16} a^{5} - \frac{1}{4} a^{2} + \frac{1}{4} a - \frac{1}{2}$, $\frac{1}{16} a^{12} - \frac{1}{8} a^{7} - \frac{1}{4} a^{6} - \frac{1}{4} a^{5} + \frac{3}{16} a^{4} + \frac{1}{8} a^{3} + \frac{1}{4} a^{2} + \frac{1}{4} a - \frac{1}{4}$, $\frac{1}{32} a^{13} - \frac{1}{32} a^{12} - \frac{1}{32} a^{11} - \frac{1}{32} a^{10} - \frac{1}{32} a^{9} + \frac{3}{32} a^{8} - \frac{3}{32} a^{7} - \frac{3}{32} a^{6} - \frac{1}{4} a^{5} - \frac{1}{16} a^{4} + \frac{3}{8} a^{3} - \frac{1}{8} a^{2} - \frac{1}{2} a - \frac{1}{4}$, $\frac{1}{2368} a^{14} + \frac{27}{1184} a^{12} + \frac{25}{1184} a^{10} + \frac{47}{592} a^{8} - \frac{1}{8} a^{7} - \frac{263}{2368} a^{6} - \frac{1}{4} a^{5} + \frac{35}{1184} a^{4} - \frac{3}{8} a^{3} - \frac{63}{592} a^{2} - \frac{1}{4} a + \frac{71}{296}$, $\frac{1}{2368} a^{15} - \frac{5}{592} a^{13} - \frac{1}{32} a^{12} - \frac{3}{296} a^{11} - \frac{1}{32} a^{10} + \frac{57}{1184} a^{9} + \frac{3}{32} a^{8} + \frac{107}{2368} a^{7} - \frac{3}{32} a^{6} + \frac{109}{1184} a^{5} - \frac{1}{16} a^{4} - \frac{285}{592} a^{3} - \frac{1}{8} a^{2} - \frac{3}{296} a - \frac{1}{4}$
Class group and class number
$C_{2}$, which has order $2$
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{27}{2368} a^{15} - \frac{63}{1184} a^{13} - \frac{231}{1184} a^{11} - \frac{455}{592} a^{9} - \frac{3851}{2368} a^{7} - \frac{3535}{1184} a^{5} - \frac{3479}{592} a^{3} - \frac{955}{296} a \) (order $4$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 57122.4567908 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_8:C_2^2$ (as 16T38):
| A solvable group of order 32 |
| The 11 conjugacy class representatives for $C_8:C_2^2$ |
| Character table for $C_8:C_2^2$ |
Intermediate fields
| \(\Q(\sqrt{-7}) \), \(\Q(\sqrt{7}) \), \(\Q(\sqrt{-1}) \), 4.0.2744.1, 4.0.10976.1, \(\Q(i, \sqrt{7})\), 8.0.1686616064.1, 8.0.1686616064.2, 8.0.481890304.4 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 8 siblings: | data not computed |
| Degree 16 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.2.2.1 | $x^{2} + 2 x + 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ |
| 2.2.2.1 | $x^{2} + 2 x + 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
| 2.4.8.2 | $x^{4} + 6 x^{2} + 1$ | $4$ | $1$ | $8$ | $C_2^2$ | $[2, 3]$ | |
| 2.4.8.2 | $x^{4} + 6 x^{2} + 1$ | $4$ | $1$ | $8$ | $C_2^2$ | $[2, 3]$ | |
| 2.4.8.2 | $x^{4} + 6 x^{2} + 1$ | $4$ | $1$ | $8$ | $C_2^2$ | $[2, 3]$ | |
| 7 | Data not computed | ||||||