Normalized defining polynomial
\( x^{16} - 3 x^{15} + 21 x^{14} - 41 x^{13} + 169 x^{12} - 183 x^{11} + 615 x^{10} - 92 x^{9} + 1529 x^{8} + 789 x^{7} + 5754 x^{6} + 136 x^{5} + 21648 x^{4} + 4914 x^{3} + 27951 x^{2} + 24712 x + 67519 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(181828946813008408203125=5^{10}\cdot 11^{6}\cdot 101^{5}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $28.43$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 11, 101$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $\frac{1}{3} a^{13} - \frac{1}{3} a^{10} + \frac{1}{3} a^{9} - \frac{1}{3} a^{7} - \frac{1}{3} a^{6} - \frac{1}{3} a^{5} - \frac{1}{3} a^{4} - \frac{1}{3} a^{3} - \frac{1}{3} a - \frac{1}{3}$, $\frac{1}{45} a^{14} + \frac{1}{9} a^{13} + \frac{14}{45} a^{11} + \frac{11}{45} a^{10} - \frac{4}{45} a^{9} + \frac{2}{45} a^{8} - \frac{4}{15} a^{7} + \frac{2}{15} a^{6} - \frac{2}{15} a^{5} - \frac{1}{3} a^{4} + \frac{22}{45} a^{3} + \frac{14}{45} a^{2} - \frac{2}{15} a + \frac{4}{45}$, $\frac{1}{2338453817553155069962322811945} a^{15} + \frac{2268638225069738750975783461}{2338453817553155069962322811945} a^{14} + \frac{61188055027210847740761258245}{467690763510631013992464562389} a^{13} - \frac{127013871824783003783485733476}{2338453817553155069962322811945} a^{12} + \frac{10272365834323119311075528293}{155896921170210337997488187463} a^{11} + \frac{6488330744661827259711570551}{13211603489000876101482049785} a^{10} - \frac{281281384145043987766566718474}{779484605851051689987440937315} a^{9} + \frac{69841445846883346296990638909}{467690763510631013992464562389} a^{8} + \frac{9504735772442876207087598442}{86609400650116854443048993035} a^{7} + \frac{22243923511208854880063615068}{155896921170210337997488187463} a^{6} - \frac{929778874530302578957108316}{4403867829666958700494016595} a^{5} - \frac{626514430926991148902836352898}{2338453817553155069962322811945} a^{4} + \frac{938438123526743027358678083956}{2338453817553155069962322811945} a^{3} + \frac{984840252063069207245321757643}{2338453817553155069962322811945} a^{2} - \frac{751815433863056267799327030527}{2338453817553155069962322811945} a + \frac{862905227895954158514174240224}{2338453817553155069962322811945}$
Class group and class number
$C_{2}$, which has order $2$
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 71186.6489359 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 4096 |
| The 88 conjugacy class representatives for t16n1574 are not computed |
| Character table for t16n1574 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 4.2.275.1, 8.0.7638125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $16$ | ${\href{/LocalNumberField/3.8.0.1}{8} }{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{4}$ | R | $16$ | R | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| $11$ | 11.4.3.2 | $x^{4} - 11$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ |
| 11.4.3.2 | $x^{4} - 11$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ | |
| 11.8.0.1 | $x^{8} + x^{2} - 2 x + 6$ | $1$ | $8$ | $0$ | $C_8$ | $[\ ]^{8}$ | |
| $101$ | 101.4.3.3 | $x^{4} + 202$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 101.4.2.2 | $x^{4} - 101 x^{2} + 30603$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 101.4.0.1 | $x^{4} - x + 12$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 101.4.0.1 | $x^{4} - x + 12$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |