Properties

Label 16.0.18182894681...3125.1
Degree $16$
Signature $[0, 8]$
Discriminant $5^{10}\cdot 11^{6}\cdot 101^{5}$
Root discriminant $28.43$
Ramified primes $5, 11, 101$
Class number $2$
Class group $[2]$
Galois group 16T1574

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![21491, -43896, 47214, -20723, -1335, 5389, -4390, 4755, 2101, -1715, -175, 199, 10, 2, -6, -1, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^16 - x^15 - 6*x^14 + 2*x^13 + 10*x^12 + 199*x^11 - 175*x^10 - 1715*x^9 + 2101*x^8 + 4755*x^7 - 4390*x^6 + 5389*x^5 - 1335*x^4 - 20723*x^3 + 47214*x^2 - 43896*x + 21491)
 
gp: K = bnfinit(x^16 - x^15 - 6*x^14 + 2*x^13 + 10*x^12 + 199*x^11 - 175*x^10 - 1715*x^9 + 2101*x^8 + 4755*x^7 - 4390*x^6 + 5389*x^5 - 1335*x^4 - 20723*x^3 + 47214*x^2 - 43896*x + 21491, 1)
 

Normalized defining polynomial

\( x^{16} - x^{15} - 6 x^{14} + 2 x^{13} + 10 x^{12} + 199 x^{11} - 175 x^{10} - 1715 x^{9} + 2101 x^{8} + 4755 x^{7} - 4390 x^{6} + 5389 x^{5} - 1335 x^{4} - 20723 x^{3} + 47214 x^{2} - 43896 x + 21491 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $16$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 8]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(181828946813008408203125=5^{10}\cdot 11^{6}\cdot 101^{5}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $28.43$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $5, 11, 101$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{5} a^{12} - \frac{1}{5} a^{11} + \frac{2}{5} a^{10} - \frac{1}{5} a^{9} + \frac{2}{5} a^{7} - \frac{2}{5} a^{6} + \frac{2}{5} a^{5} - \frac{1}{5} a^{3} + \frac{2}{5} a^{2} - \frac{1}{5} a + \frac{1}{5}$, $\frac{1}{5} a^{13} + \frac{1}{5} a^{11} + \frac{1}{5} a^{10} - \frac{1}{5} a^{9} + \frac{2}{5} a^{8} + \frac{2}{5} a^{5} - \frac{1}{5} a^{4} + \frac{1}{5} a^{3} + \frac{1}{5} a^{2} + \frac{1}{5}$, $\frac{1}{5} a^{14} + \frac{2}{5} a^{11} + \frac{2}{5} a^{10} - \frac{2}{5} a^{9} - \frac{2}{5} a^{7} - \frac{1}{5} a^{6} + \frac{2}{5} a^{5} + \frac{1}{5} a^{4} + \frac{2}{5} a^{3} - \frac{2}{5} a^{2} + \frac{2}{5} a - \frac{1}{5}$, $\frac{1}{730078951221277330030125530808746885} a^{15} + \frac{13225065086804070492010604872186379}{730078951221277330030125530808746885} a^{14} + \frac{34010162037146772059464983007919327}{730078951221277330030125530808746885} a^{13} + \frac{56235119428293070638692630418009469}{730078951221277330030125530808746885} a^{12} - \frac{46541359484773303091404709772171496}{146015790244255466006025106161749377} a^{11} + \frac{313276905939731363485355700318599817}{730078951221277330030125530808746885} a^{10} + \frac{65643416234862024761157738420037298}{730078951221277330030125530808746885} a^{9} + \frac{318022216313844396849318879723586482}{730078951221277330030125530808746885} a^{8} - \frac{51835776231777770765501880044327860}{146015790244255466006025106161749377} a^{7} + \frac{281110723213289272802658932502006474}{730078951221277330030125530808746885} a^{6} - \frac{240067327642227222449529250011605438}{730078951221277330030125530808746885} a^{5} - \frac{97823115108510670301095145561054906}{730078951221277330030125530808746885} a^{4} - \frac{55425845676735285453601649993890044}{730078951221277330030125530808746885} a^{3} + \frac{2280484140918863091183427167420739}{146015790244255466006025106161749377} a^{2} - \frac{50198015987008329989706250777967784}{146015790244255466006025106161749377} a - \frac{23506737610878471350524539279281015}{146015790244255466006025106161749377}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{2}$, which has order $2$

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $7$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 38801.4515195 \)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

16T1574:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 4096
The 88 conjugacy class representatives for t16n1574 are not computed
Character table for t16n1574 is not computed

Intermediate fields

\(\Q(\sqrt{5}) \), 4.2.275.1, 8.0.7638125.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 16 siblings: data not computed
Degree 32 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type $16$ ${\href{/LocalNumberField/3.8.0.1}{8} }{,}\,{\href{/LocalNumberField/3.4.0.1}{4} }^{2}$ R $16$ R ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/19.8.0.1}{8} }{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/29.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/41.8.0.1}{8} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/53.8.0.1}{8} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/59.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{6}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$5$5.4.2.1$x^{4} + 15 x^{2} + 100$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
5.4.2.1$x^{4} + 15 x^{2} + 100$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
5.8.6.1$x^{8} - 5 x^{4} + 400$$4$$2$$6$$C_4\times C_2$$[\ ]_{4}^{2}$
$11$11.4.3.2$x^{4} - 11$$4$$1$$3$$D_{4}$$[\ ]_{4}^{2}$
11.4.3.2$x^{4} - 11$$4$$1$$3$$D_{4}$$[\ ]_{4}^{2}$
11.8.0.1$x^{8} + x^{2} - 2 x + 6$$1$$8$$0$$C_8$$[\ ]^{8}$
$101$101.4.0.1$x^{4} - x + 12$$1$$4$$0$$C_4$$[\ ]^{4}$
101.4.0.1$x^{4} - x + 12$$1$$4$$0$$C_4$$[\ ]^{4}$
101.4.2.2$x^{4} - 101 x^{2} + 30603$$2$$2$$2$$C_4$$[\ ]_{2}^{2}$
101.4.3.3$x^{4} + 202$$4$$1$$3$$C_4$$[\ ]_{4}$