Normalized defining polynomial
\( x^{16} - 5 x^{15} + 23 x^{14} - 20 x^{13} + 218 x^{12} - 520 x^{11} + 2936 x^{10} - 85 x^{9} + 19125 x^{8} - 4545 x^{7} + 114546 x^{6} + 83880 x^{5} + 798933 x^{4} + 836180 x^{3} + 2107098 x^{2} + 1340385 x + 957431 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1816151322484127584722900390625=5^{14}\cdot 29^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $77.84$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 29$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{179} a^{14} - \frac{15}{179} a^{13} + \frac{15}{179} a^{12} + \frac{52}{179} a^{11} + \frac{13}{179} a^{10} + \frac{84}{179} a^{9} + \frac{42}{179} a^{8} + \frac{6}{179} a^{7} + \frac{78}{179} a^{6} - \frac{8}{179} a^{5} - \frac{86}{179} a^{4} + \frac{84}{179} a^{3} - \frac{84}{179} a^{2} - \frac{10}{179} a + \frac{36}{179}$, $\frac{1}{4828872109685134798401513288141061931521849} a^{15} - \frac{5509620048908734349701714001830494688128}{4828872109685134798401513288141061931521849} a^{14} + \frac{1254855079381517598041709327218756264730806}{4828872109685134798401513288141061931521849} a^{13} - \frac{2300870990034022960882598907668508387449268}{4828872109685134798401513288141061931521849} a^{12} - \frac{2030034007858068200996106890019768165556225}{4828872109685134798401513288141061931521849} a^{11} + \frac{1473165800678781586055153203808489468930537}{4828872109685134798401513288141061931521849} a^{10} - \frac{33269460780306078513200875694097831602693}{68012283235001898569035398424521999035519} a^{9} - \frac{1311559789963641780077035995558154936785651}{4828872109685134798401513288141061931521849} a^{8} - \frac{1333571651192086424259913992921774301428807}{4828872109685134798401513288141061931521849} a^{7} + \frac{701458556529694993960741668439299088647271}{4828872109685134798401513288141061931521849} a^{6} - \frac{56996965839457758707473404724850647798760}{4828872109685134798401513288141061931521849} a^{5} + \frac{773106449116925892210922997065461174078947}{4828872109685134798401513288141061931521849} a^{4} - \frac{2332021948347679760549701862659588890583373}{4828872109685134798401513288141061931521849} a^{3} + \frac{1502068795538019109009818326914059969603261}{4828872109685134798401513288141061931521849} a^{2} - \frac{2017594782219503789710525674842407315460960}{4828872109685134798401513288141061931521849} a + \frac{1500288047959500770660070181983376388414895}{4828872109685134798401513288141061931521849}$
Class group and class number
$C_{2}\times C_{2}\times C_{164}$, which has order $656$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 499585.18112 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 32 |
| The 14 conjugacy class representatives for $C_8.C_4$ |
| Character table for $C_8.C_4$ |
Intermediate fields
| \(\Q(\sqrt{145}) \), \(\Q(\sqrt{5}) \), \(\Q(\sqrt{29}) \), \(\Q(\sqrt{5}, \sqrt{29})\), 8.8.9294114390625.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.8.7.2 | $x^{8} - 20$ | $8$ | $1$ | $7$ | $C_8:C_2$ | $[\ ]_{8}^{2}$ |
| 5.8.7.2 | $x^{8} - 20$ | $8$ | $1$ | $7$ | $C_8:C_2$ | $[\ ]_{8}^{2}$ | |
| $29$ | 29.8.7.2 | $x^{8} - 116$ | $8$ | $1$ | $7$ | $C_8:C_2$ | $[\ ]_{8}^{2}$ |
| 29.8.7.2 | $x^{8} - 116$ | $8$ | $1$ | $7$ | $C_8:C_2$ | $[\ ]_{8}^{2}$ |