Normalized defining polynomial
\( x^{16} - 7 x^{15} - 2 x^{14} + 28 x^{13} + 965 x^{12} - 4442 x^{11} - 2787 x^{10} + 24342 x^{9} + 167258 x^{8} - 671891 x^{7} - 1306251 x^{6} + 10502938 x^{5} - 15131120 x^{4} - 20454968 x^{3} + 94305600 x^{2} - 123625248 x + 63451136 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(18102079666797893193942794567137=47^{8}\cdot 97^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $89.87$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $47, 97$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2} a^{6} - \frac{1}{2} a$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{2}$, $\frac{1}{4} a^{8} - \frac{1}{4} a^{7} - \frac{1}{2} a^{5} + \frac{1}{4} a^{3} - \frac{1}{4} a^{2} - \frac{1}{2} a$, $\frac{1}{8} a^{9} - \frac{1}{8} a^{8} - \frac{1}{4} a^{6} - \frac{3}{8} a^{4} - \frac{1}{8} a^{3} - \frac{1}{4} a^{2}$, $\frac{1}{8} a^{10} - \frac{1}{8} a^{8} - \frac{1}{4} a^{7} - \frac{1}{4} a^{6} - \frac{3}{8} a^{5} - \frac{1}{2} a^{4} - \frac{3}{8} a^{3} - \frac{1}{4} a^{2}$, $\frac{1}{16} a^{11} - \frac{1}{16} a^{9} - \frac{1}{8} a^{8} - \frac{1}{8} a^{7} - \frac{3}{16} a^{6} + \frac{1}{4} a^{5} - \frac{3}{16} a^{4} + \frac{3}{8} a^{3}$, $\frac{1}{16} a^{12} - \frac{1}{16} a^{10} + \frac{1}{16} a^{7} + \frac{5}{16} a^{5} + \frac{1}{8} a^{3} - \frac{1}{2} a$, $\frac{1}{224} a^{13} + \frac{1}{224} a^{12} - \frac{5}{224} a^{11} - \frac{11}{224} a^{10} - \frac{1}{28} a^{9} - \frac{3}{32} a^{8} - \frac{31}{224} a^{7} - \frac{19}{224} a^{6} + \frac{13}{32} a^{5} + \frac{29}{112} a^{4} - \frac{1}{7} a^{3} - \frac{1}{4} a^{2} + \frac{2}{7} a$, $\frac{1}{896} a^{14} - \frac{1}{896} a^{13} + \frac{1}{128} a^{12} - \frac{1}{896} a^{11} - \frac{33}{896} a^{9} + \frac{95}{896} a^{8} + \frac{113}{896} a^{7} + \frac{185}{896} a^{6} + \frac{141}{448} a^{5} - \frac{9}{28} a^{4} - \frac{41}{112} a^{3} - \frac{3}{7} a^{2} + \frac{3}{28} a$, $\frac{1}{46735897282731501892895119541885158172672} a^{15} + \frac{42455201600494559264451565459401995}{1669139188668982210460539983638755649024} a^{14} - \frac{31450272459283142527218486104545982787}{23367948641365750946447559770942579086336} a^{13} + \frac{444209458984414682137205374267714805469}{23367948641365750946447559770942579086336} a^{12} - \frac{134129812590602703143506617435857093499}{6676556754675928841842159934555022596096} a^{11} + \frac{356399016942857073303292012762446122577}{6676556754675928841842159934555022596096} a^{10} - \frac{1446614059555441145477474164741839990491}{23367948641365750946447559770942579086336} a^{9} + \frac{697621473750719714819813789934453176649}{11683974320682875473223779885471289543168} a^{8} + \frac{4415054790158290422495064424421745144211}{23367948641365750946447559770942579086336} a^{7} - \frac{10105814516103107744235875728942822986961}{46735897282731501892895119541885158172672} a^{6} - \frac{10422123495678242719873777665349653297243}{23367948641365750946447559770942579086336} a^{5} - \frac{1219149453427082116139175200786108438827}{5841987160341437736611889942735644771584} a^{4} + \frac{43231730226910795528009531941853579855}{834569594334491105230269991819377824512} a^{3} - \frac{529456329994869220814429008790302290141}{1460496790085359434152972485683911192896} a^{2} - \frac{495509309322384883050258549997523163685}{1460496790085359434152972485683911192896} a - \frac{665489865287632481978771517517336572}{3260037477869105879805742155544444627}$
Class group and class number
$C_{10}$, which has order $10$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 33884343603.8 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_4.D_4:C_4$ (as 16T260):
| A solvable group of order 128 |
| The 32 conjugacy class representatives for $C_4.D_4:C_4$ |
| Character table for $C_4.D_4:C_4$ is not computed |
Intermediate fields
| \(\Q(\sqrt{-47}) \), 4.0.214273.1, 8.0.4453553097313.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/2.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | $16$ | ${\href{/LocalNumberField/7.8.0.1}{8} }{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | $16$ | ${\href{/LocalNumberField/17.8.0.1}{8} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{4}$ | $16$ | $16$ | $16$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{4}$ | $16$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $47$ | 47.8.4.1 | $x^{8} + 172302 x^{4} - 103823 x^{2} + 7421994801$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 47.8.4.1 | $x^{8} + 172302 x^{4} - 103823 x^{2} + 7421994801$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $97$ | 97.4.2.2 | $x^{4} - 97 x^{2} + 47045$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ |
| 97.4.0.1 | $x^{4} - x + 23$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 97.8.7.4 | $x^{8} - 1515625$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ |