Normalized defining polynomial
\( x^{16} - 32768 x + 61440 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1805510340771840000000000000000=2^{38}\cdot 3^{16}\cdot 5^{16}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $77.81$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{2} a^{2}$, $\frac{1}{4} a^{3}$, $\frac{1}{8} a^{4}$, $\frac{1}{16} a^{5} - \frac{1}{2} a$, $\frac{1}{32} a^{6} - \frac{1}{4} a^{2}$, $\frac{1}{32} a^{7}$, $\frac{1}{128} a^{8} - \frac{1}{2}$, $\frac{1}{256} a^{9} - \frac{1}{64} a^{7} - \frac{1}{8} a^{3} - \frac{1}{4} a$, $\frac{1}{512} a^{10} - \frac{1}{16} a^{4} - \frac{1}{8} a^{2} - \frac{1}{2}$, $\frac{1}{512} a^{11} - \frac{1}{8} a^{3}$, $\frac{1}{2048} a^{12} - \frac{1}{256} a^{8} + \frac{1}{32} a^{4} - \frac{1}{4}$, $\frac{1}{4096} a^{13} - \frac{1}{1024} a^{11} - \frac{1}{512} a^{9} - \frac{1}{64} a^{7} - \frac{1}{64} a^{5} - \frac{1}{16} a^{3} + \frac{1}{8} a$, $\frac{1}{4096} a^{14} - \frac{1}{64} a^{6} - \frac{1}{16} a^{4} - \frac{1}{2}$, $\frac{1}{8192} a^{15} - \frac{1}{1024} a^{11} + \frac{1}{128} a^{7} - \frac{1}{16} a^{3}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 6244054534.66 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$A_{16}$ (as 16T1953):
| A non-solvable group of order 10461394944000 |
| The 123 conjugacy class representatives for $A_{16}$ are not computed |
| Character table for $A_{16}$ is not computed |
Intermediate fields
| The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.12.0.1}{12} }{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }$ | ${\href{/LocalNumberField/11.7.0.1}{7} }{,}\,{\href{/LocalNumberField/11.6.0.1}{6} }{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }$ | ${\href{/LocalNumberField/13.13.0.1}{13} }{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }$ | ${\href{/LocalNumberField/17.9.0.1}{9} }{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }$ | ${\href{/LocalNumberField/19.6.0.1}{6} }{,}\,{\href{/LocalNumberField/19.5.0.1}{5} }{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }$ | ${\href{/LocalNumberField/23.8.0.1}{8} }{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/29.9.0.1}{9} }{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}$ | $15{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }$ | ${\href{/LocalNumberField/37.9.0.1}{9} }{,}\,{\href{/LocalNumberField/37.7.0.1}{7} }$ | ${\href{/LocalNumberField/41.14.0.1}{14} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }$ | ${\href{/LocalNumberField/43.9.0.1}{9} }{,}\,{\href{/LocalNumberField/43.5.0.1}{5} }{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/47.9.0.1}{9} }{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }$ | ${\href{/LocalNumberField/53.10.0.1}{10} }{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }$ | $15{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.4.10.4 | $x^{4} + 6 x^{2} - 1$ | $4$ | $1$ | $10$ | $D_{4}$ | $[2, 3, 7/2]$ |
| 2.4.10.7 | $x^{4} - 2 x^{2} + 3$ | $4$ | $1$ | $10$ | $D_{4}$ | $[2, 3, 7/2]$ | |
| 2.8.18.77 | $x^{8} + 8 x^{7} + 36$ | $8$ | $1$ | $18$ | $C_4\wr C_2$ | $[2, 2, 3]^{4}$ | |
| $3$ | $\Q_{3}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 3.3.4.3 | $x^{3} - 3 x^{2} + 12$ | $3$ | $1$ | $4$ | $C_3$ | $[2]$ | |
| 3.12.12.10 | $x^{12} + 9 x^{11} + 36 x^{10} - 72 x^{9} + 18 x^{8} + 45 x^{7} + 99 x^{6} + 54 x^{5} + 81 x^{4} - 81 x^{3} + 81 x^{2} - 81 x + 81$ | $3$ | $4$ | $12$ | 12T173 | $[3/2, 3/2, 3/2, 3/2]_{2}^{4}$ | |
| $5$ | $\Q_{5}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 5.5.6.2 | $x^{5} + 15 x^{2} + 5$ | $5$ | $1$ | $6$ | $D_{5}$ | $[3/2]_{2}$ | |
| 5.10.10.1 | $x^{10} + 10 x^{5} + 75 x^{2} + 25$ | $5$ | $2$ | $10$ | $C_5^2 : C_8$ | $[5/4, 5/4]_{4}^{2}$ |