Properties

Label 16.0.18051525877...0000.3
Degree $16$
Signature $[0, 8]$
Discriminant $2^{24}\cdot 5^{12}\cdot 761^{3}$
Root discriminant $32.81$
Ramified primes $2, 5, 761$
Class number $8$ (GRH)
Class group $[8]$ (GRH)
Galois group 16T1398

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![631, -2956, 7828, -14682, 20703, -23100, 21159, -16196, 10358, -5628, 2691, -1136, 433, -136, 37, -6, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^16 - 6*x^15 + 37*x^14 - 136*x^13 + 433*x^12 - 1136*x^11 + 2691*x^10 - 5628*x^9 + 10358*x^8 - 16196*x^7 + 21159*x^6 - 23100*x^5 + 20703*x^4 - 14682*x^3 + 7828*x^2 - 2956*x + 631)
 
gp: K = bnfinit(x^16 - 6*x^15 + 37*x^14 - 136*x^13 + 433*x^12 - 1136*x^11 + 2691*x^10 - 5628*x^9 + 10358*x^8 - 16196*x^7 + 21159*x^6 - 23100*x^5 + 20703*x^4 - 14682*x^3 + 7828*x^2 - 2956*x + 631, 1)
 

Normalized defining polynomial

\( x^{16} - 6 x^{15} + 37 x^{14} - 136 x^{13} + 433 x^{12} - 1136 x^{11} + 2691 x^{10} - 5628 x^{9} + 10358 x^{8} - 16196 x^{7} + 21159 x^{6} - 23100 x^{5} + 20703 x^{4} - 14682 x^{3} + 7828 x^{2} - 2956 x + 631 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $16$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 8]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(1805152587776000000000000=2^{24}\cdot 5^{12}\cdot 761^{3}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $32.81$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 5, 761$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{4} a^{14} - \frac{1}{4} a^{13} - \frac{1}{4} a^{12} - \frac{1}{2} a^{10} - \frac{1}{2} a^{9} - \frac{1}{4} a^{8} + \frac{1}{4} a^{7} - \frac{1}{4} a^{5} - \frac{1}{2} a^{4} - \frac{1}{4} a^{3} - \frac{1}{4} a - \frac{1}{4}$, $\frac{1}{11929141935179848480756} a^{15} + \frac{221114901712302678257}{11929141935179848480756} a^{14} + \frac{1449054623951088158377}{11929141935179848480756} a^{13} - \frac{232981309526435364331}{2982285483794962120189} a^{12} - \frac{2253140129328309119377}{5964570967589924240378} a^{11} + \frac{1139240781790691356307}{5964570967589924240378} a^{10} + \frac{87774551742422812363}{11929141935179848480756} a^{9} + \frac{5495427394002795388339}{11929141935179848480756} a^{8} - \frac{2494261469817012028351}{5964570967589924240378} a^{7} + \frac{960717577885376740033}{11929141935179848480756} a^{6} - \frac{1252119472866712834728}{2982285483794962120189} a^{5} - \frac{5829972676241888216607}{11929141935179848480756} a^{4} + \frac{1724697670229306586229}{5964570967589924240378} a^{3} + \frac{297999842769864976857}{11929141935179848480756} a^{2} + \frac{2311454517218339860917}{11929141935179848480756} a - \frac{1111258821027846764349}{2982285483794962120189}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{8}$, which has order $8$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $7$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 53679.5383654 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

16T1398:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 2048
The 71 conjugacy class representatives for t16n1398 are not computed
Character table for t16n1398 is not computed

Intermediate fields

\(\Q(\sqrt{10}) \), \(\Q(\sqrt{2}) \), \(\Q(\sqrt{5}) \), \(\Q(\sqrt{2}, \sqrt{5})\), 8.0.48704000000.2

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 16 siblings: data not computed
Degree 32 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R ${\href{/LocalNumberField/3.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{2}$ R ${\href{/LocalNumberField/7.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/11.8.0.1}{8} }{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/13.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/31.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/43.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/53.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.4.6.1$x^{4} - 6 x^{2} + 4$$2$$2$$6$$C_2^2$$[3]^{2}$
2.4.6.1$x^{4} - 6 x^{2} + 4$$2$$2$$6$$C_2^2$$[3]^{2}$
2.8.12.1$x^{8} + 6 x^{6} + 8 x^{5} + 16$$2$$4$$12$$C_4\times C_2$$[3]^{4}$
$5$5.8.6.1$x^{8} - 5 x^{4} + 400$$4$$2$$6$$C_4\times C_2$$[\ ]_{4}^{2}$
5.8.6.1$x^{8} - 5 x^{4} + 400$$4$$2$$6$$C_4\times C_2$$[\ ]_{4}^{2}$
761Data not computed