Normalized defining polynomial
\( x^{16} - 5 x^{15} + 14 x^{14} - 28 x^{13} + 46 x^{12} - 63 x^{11} + 73 x^{10} - 72 x^{9} + 57 x^{8} + \cdots + 1 \)
Invariants
Degree: | $16$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
oscar: degree(K)
| |
Signature: | $[0, 8]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
oscar: signature(K)
| |
Discriminant: | \(180355734956640625\) \(\medspace = 5^{8}\cdot 59^{3}\cdot 131^{3}\) | sage: K.disc()
gp: K.disc
magma: OK := Integers(K); Discriminant(OK);
oscar: OK = ring_of_integers(K); discriminant(OK)
| |
Root discriminant: | \(11.98\) | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(OK))^(1/Degree(K));
oscar: (1.0 * dK)^(1/degree(K))
| |
Galois root discriminant: | $5^{1/2}59^{1/2}131^{3/4}\approx 665.0655921280412$ | ||
Ramified primes: | \(5\), \(59\), \(131\) | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(OK));
oscar: prime_divisors(discriminant((OK)))
| |
Discriminant root field: | \(\Q(\sqrt{7729}) \) | ||
$\card{ \Aut(K/\Q) }$: | $2$ | sage: K.automorphisms()
magma: Automorphisms(K);
oscar: automorphisms(K)
| |
This field is not Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{6911}a^{15}-\frac{3300}{6911}a^{14}+\frac{2511}{6911}a^{13}-\frac{1306}{6911}a^{12}-\frac{2237}{6911}a^{11}-\frac{3185}{6911}a^{10}-\frac{3161}{6911}a^{9}+\frac{546}{6911}a^{8}-\frac{2153}{6911}a^{7}+\frac{3415}{6911}a^{6}-\frac{1294}{6911}a^{5}-\frac{378}{6911}a^{4}+\frac{1538}{6911}a^{3}-\frac{1939}{6911}a^{2}+\frac{3234}{6911}a+\frac{732}{6911}$
Monogenic: | Not computed | |
Index: | $1$ | |
Inessential primes: | None |
Class group and class number
Trivial group, which has order $1$
Unit group
Rank: | $7$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
oscar: rank(UK)
| |
Torsion generator: | \( -1 \) (order $2$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
oscar: torsion_units_generator(OK)
| |
Fundamental units: | $\frac{22955}{6911}a^{15}-\frac{110605}{6911}a^{14}+\frac{306349}{6911}a^{13}-\frac{614391}{6911}a^{12}+\frac{1021223}{6911}a^{11}-\frac{1416961}{6911}a^{10}+\frac{1677207}{6911}a^{9}-\frac{1710141}{6911}a^{8}+\frac{1422112}{6911}a^{7}-\frac{953866}{6911}a^{6}+\frac{711541}{6911}a^{5}-\frac{584209}{6911}a^{4}+\frac{245287}{6911}a^{3}+\frac{73116}{6911}a^{2}-\frac{84424}{6911}a+\frac{9330}{6911}$, $\frac{41408}{6911}a^{15}-\frac{216349}{6911}a^{14}+\frac{635305}{6911}a^{13}-\frac{1334096}{6911}a^{12}+\frac{2292889}{6911}a^{11}-\frac{3298414}{6911}a^{10}+\frac{4053498}{6911}a^{9}-\frac{4288844}{6911}a^{8}+\frac{3794615}{6911}a^{7}-\frac{2734407}{6911}a^{6}+\frac{1961755}{6911}a^{5}-\frac{1574517}{6911}a^{4}+\frac{885247}{6911}a^{3}-\frac{32669}{6911}a^{2}-\frac{208305}{6911}a+\frac{75031}{6911}$, $\frac{19675}{6911}a^{15}-\frac{109231}{6911}a^{14}+\frac{335825}{6911}a^{13}-\frac{733018}{6911}a^{12}+\frac{1295541}{6911}a^{11}-\frac{1917185}{6911}a^{10}+\frac{2425175}{6911}a^{9}-\frac{2644057}{6911}a^{8}+\frac{2436827}{6911}a^{7}-\frac{1850765}{6911}a^{6}+\frac{1320675}{6911}a^{5}-\frac{1023742}{6911}a^{4}+\frac{653426}{6911}a^{3}-\frac{139325}{6911}a^{2}-\frac{118114}{6911}a+\frac{75597}{6911}$, $a$, $\frac{10699}{6911}a^{15}-\frac{60600}{6911}a^{14}+\frac{188729}{6911}a^{13}-\frac{413512}{6911}a^{12}+\frac{731696}{6911}a^{11}-\frac{1083201}{6911}a^{10}+\frac{1371273}{6911}a^{9}-\frac{1490917}{6911}a^{8}+\frac{1374705}{6911}a^{7}-\frac{1038022}{6911}a^{6}+\frac{730793}{6911}a^{5}-\frac{574900}{6911}a^{4}+\frac{380076}{6911}a^{3}-\frac{67649}{6911}a^{2}-\frac{78832}{6911}a+\frac{36060}{6911}$, $\frac{48172}{6911}a^{15}-\frac{256485}{6911}a^{14}+\frac{756869}{6911}a^{13}-\frac{1598240}{6911}a^{12}+\frac{2753037}{6911}a^{11}-\frac{3977445}{6911}a^{10}+\frac{4898270}{6911}a^{9}-\frac{5205337}{6911}a^{8}+\frac{4622520}{6911}a^{7}-\frac{3346988}{6911}a^{6}+\frac{2393858}{6911}a^{5}-\frac{1926700}{6911}a^{4}+\frac{1087643}{6911}a^{3}-\frac{58631}{6911}a^{2}-\frac{262132}{6911}a+\frac{91825}{6911}$, $\frac{50717}{6911}a^{15}-\frac{271942}{6911}a^{14}+\frac{809977}{6911}a^{13}-\frac{1722217}{6911}a^{12}+\frac{2982599}{6911}a^{11}-\frac{4329128}{6911}a^{10}+\frac{5360966}{6911}a^{9}-\frac{5723203}{6911}a^{8}+\frac{5121150}{6911}a^{7}-\frac{3743778}{6911}a^{6}+\frac{2666704}{6911}a^{5}-\frac{2128500}{6911}a^{4}+\frac{1249180}{6911}a^{3}-\frac{114220}{6911}a^{2}-\frac{283336}{6911}a+\frac{116439}{6911}$ | sage: UK.fundamental_units()
gp: K.fu
magma: [K|fUK(g): g in Generators(UK)];
oscar: [K(fUK(a)) for a in gens(UK)]
| |
Regulator: | \( 69.5094645498 \) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
oscar: regulator(K)
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{8}\cdot 69.5094645498 \cdot 1}{2\cdot\sqrt{180355734956640625}}\cr\approx \mathstrut & 0.198786970866 \end{aligned}\]
Galois group
$Q_8^2.A_4^2.D_4$ (as 16T1871):
A solvable group of order 73728 |
The 104 conjugacy class representatives for $Q_8^2.A_4^2.D_4$ |
Character table for $Q_8^2.A_4^2.D_4$ |
Intermediate fields
\(\Q(\sqrt{5}) \), 8.0.4830625.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Degree 16 siblings: | data not computed |
Degree 32 siblings: | data not computed |
Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | ${\href{/padicField/2.12.0.1}{12} }{,}\,{\href{/padicField/2.4.0.1}{4} }$ | ${\href{/padicField/3.12.0.1}{12} }{,}\,{\href{/padicField/3.4.0.1}{4} }$ | R | ${\href{/padicField/7.12.0.1}{12} }{,}\,{\href{/padicField/7.4.0.1}{4} }$ | ${\href{/padicField/11.8.0.1}{8} }{,}\,{\href{/padicField/11.6.0.1}{6} }{,}\,{\href{/padicField/11.2.0.1}{2} }$ | $16$ | ${\href{/padicField/17.4.0.1}{4} }^{3}{,}\,{\href{/padicField/17.2.0.1}{2} }^{2}$ | ${\href{/padicField/19.8.0.1}{8} }{,}\,{\href{/padicField/19.3.0.1}{3} }^{2}{,}\,{\href{/padicField/19.1.0.1}{1} }^{2}$ | ${\href{/padicField/23.6.0.1}{6} }^{2}{,}\,{\href{/padicField/23.2.0.1}{2} }^{2}$ | ${\href{/padicField/29.4.0.1}{4} }{,}\,{\href{/padicField/29.3.0.1}{3} }^{2}{,}\,{\href{/padicField/29.2.0.1}{2} }^{2}{,}\,{\href{/padicField/29.1.0.1}{1} }^{2}$ | ${\href{/padicField/31.8.0.1}{8} }^{2}$ | ${\href{/padicField/37.6.0.1}{6} }^{2}{,}\,{\href{/padicField/37.2.0.1}{2} }^{2}$ | ${\href{/padicField/41.6.0.1}{6} }{,}\,{\href{/padicField/41.3.0.1}{3} }^{2}{,}\,{\href{/padicField/41.2.0.1}{2} }{,}\,{\href{/padicField/41.1.0.1}{1} }^{2}$ | $16$ | ${\href{/padicField/47.4.0.1}{4} }^{4}$ | ${\href{/padicField/53.12.0.1}{12} }{,}\,{\href{/padicField/53.4.0.1}{4} }$ | R |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(5\) | 5.16.8.1 | $x^{16} + 160 x^{15} + 11240 x^{14} + 453600 x^{13} + 11536702 x^{12} + 190484240 x^{11} + 2020220586 x^{10} + 13041178608 x^{9} + 45239382035 x^{8} + 65384309200 x^{7} + 52374358166 x^{6} + 35488260768 x^{5} + 46408266743 x^{4} + 66345171264 x^{3} + 136057926318 x^{2} + 159173865296 x + 74196697609$ | $2$ | $8$ | $8$ | $C_8\times C_2$ | $[\ ]_{2}^{8}$ |
\(59\) | $\Q_{59}$ | $x + 57$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
$\Q_{59}$ | $x + 57$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
59.2.1.1 | $x^{2} + 118$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
59.2.1.1 | $x^{2} + 118$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
59.2.1.1 | $x^{2} + 118$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
59.8.0.1 | $x^{8} + 16 x^{4} + 32 x^{3} + 2 x^{2} + 50 x + 2$ | $1$ | $8$ | $0$ | $C_8$ | $[\ ]^{8}$ | |
\(131\) | $\Q_{131}$ | $x + 129$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
$\Q_{131}$ | $x + 129$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
$\Q_{131}$ | $x + 129$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
$\Q_{131}$ | $x + 129$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
131.2.0.1 | $x^{2} + 127 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
131.3.0.1 | $x^{3} + 3 x + 129$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
131.3.0.1 | $x^{3} + 3 x + 129$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
131.4.3.2 | $x^{4} + 262$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ |