Normalized defining polynomial
\( x^{16} - 12 x^{12} + 114 x^{8} + 300 x^{4} + 625 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(180143985094819840000=2^{58}\cdot 5^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $18.45$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{16} a^{8} + \frac{1}{8} a^{4} - \frac{1}{16}$, $\frac{1}{16} a^{9} + \frac{1}{8} a^{5} - \frac{1}{16} a$, $\frac{1}{80} a^{10} + \frac{9}{40} a^{6} - \frac{1}{80} a^{2}$, $\frac{1}{80} a^{11} + \frac{9}{40} a^{7} - \frac{1}{80} a^{3}$, $\frac{1}{6800} a^{12} + \frac{69}{3400} a^{8} - \frac{2561}{6800} a^{4} - \frac{11}{34}$, $\frac{1}{13600} a^{13} - \frac{1}{13600} a^{12} - \frac{287}{13600} a^{9} + \frac{287}{13600} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} + \frac{3389}{13600} a^{5} - \frac{3389}{13600} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} + \frac{201}{544} a - \frac{201}{544}$, $\frac{1}{68000} a^{14} - \frac{1}{13600} a^{12} - \frac{287}{68000} a^{10} + \frac{287}{13600} a^{8} + \frac{23789}{68000} a^{6} + \frac{3411}{13600} a^{4} + \frac{473}{2720} a^{2} + \frac{71}{544}$, $\frac{1}{68000} a^{15} - \frac{1}{13600} a^{12} - \frac{287}{68000} a^{11} + \frac{287}{13600} a^{8} - \frac{10211}{68000} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{3389}{13600} a^{4} - \frac{887}{2720} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{201}{544}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{23}{6800} a^{12} + \frac{113}{3400} a^{8} - \frac{2297}{6800} a^{4} - \frac{18}{17} \) (order $8$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 11125.0816339 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$SD_{16}:C_2$ (as 16T50):
| A solvable group of order 32 |
| The 11 conjugacy class representatives for $SD_{16}:C_2$ |
| Character table for $SD_{16}:C_2$ |
Intermediate fields
| \(\Q(\sqrt{-1}) \), \(\Q(\sqrt{2}) \), \(\Q(\sqrt{-2}) \), 4.0.512.1 x2, 4.2.1024.1 x2, \(\Q(\zeta_{8})\), 8.0.4194304.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 16 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $5$ | 5.4.2.2 | $x^{4} - 5 x^{2} + 50$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ |
| 5.4.2.2 | $x^{4} - 5 x^{2} + 50$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 5.4.0.1 | $x^{4} + x^{2} - 2 x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 5.4.0.1 | $x^{4} + x^{2} - 2 x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |