Normalized defining polynomial
\( x^{16} - 2 x^{15} - 74 x^{14} + 6167 x^{13} - 120134 x^{12} + 784396 x^{11} + 7526907 x^{10} - 240575709 x^{9} + 6418777262 x^{8} - 65084516877 x^{7} + 955574028589 x^{6} - 10483386432081 x^{5} + 56327674930810 x^{4} - 646734985272706 x^{3} + 1851579194059094 x^{2} - 19004907231570663 x + 636936648311835307 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(179873720961956854769314815076056959198372636009=67^{12}\cdot 89^{13}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $898.33$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $67, 89$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{8} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{9} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{14} - \frac{1}{2} a^{9} - \frac{1}{2} a^{7} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{3844574578819928898259623094305898128645590536674421326075686156524257592108149809422003577864141634961871174294306} a^{15} + \frac{212237447464938608305040705915068079185726050073849424350164780375997259200651086369893537658001179670110577492240}{1922287289409964449129811547152949064322795268337210663037843078262128796054074904711001788932070817480935587147153} a^{14} - \frac{308260651412316908506862092716625605924265707007944704233698097138939664081902941751697513645791794700278340059611}{3844574578819928898259623094305898128645590536674421326075686156524257592108149809422003577864141634961871174294306} a^{13} - \frac{343742795981442006046449174144974963467623087969245910859916524159644914937705783703774917367326454038775961119584}{1922287289409964449129811547152949064322795268337210663037843078262128796054074904711001788932070817480935587147153} a^{12} - \frac{287077328178302331685636594857288538402134586522843712054667214404433044433765916749030342349937909466133765777844}{1922287289409964449129811547152949064322795268337210663037843078262128796054074904711001788932070817480935587147153} a^{11} - \frac{696968100385673632339096796101696816975043132443652917652199233782164684644344570712253149630979369061681860876979}{3844574578819928898259623094305898128645590536674421326075686156524257592108149809422003577864141634961871174294306} a^{10} - \frac{1419789644750170285930967637529550904588688060222819950818182741368188934437888591945771889015707785187857906721085}{3844574578819928898259623094305898128645590536674421326075686156524257592108149809422003577864141634961871174294306} a^{9} - \frac{280976518774835191661416309529059641008726416001721342223030276050472721473229170356112816839964070347159296797057}{1922287289409964449129811547152949064322795268337210663037843078262128796054074904711001788932070817480935587147153} a^{8} + \frac{277091404822038057288134304563041553748501692670009196873131019673656459374037504951781201879742546902027280880621}{3844574578819928898259623094305898128645590536674421326075686156524257592108149809422003577864141634961871174294306} a^{7} + \frac{1152505105283374603885899449732208971525173645351444953004893690637836940235423805297674556273996449172348622147625}{3844574578819928898259623094305898128645590536674421326075686156524257592108149809422003577864141634961871174294306} a^{6} - \frac{92357846569931431532802293694633674108003271995635493481673229849971603073902155942109736910716295658970723378877}{349506779892720808932693008573263466240508230606765575097789650593114326555286346311091234351285603178351924935846} a^{5} + \frac{374605047137285154668215343721811439402841045094131439226362897173145209863026171267065415545781543929152052630054}{1922287289409964449129811547152949064322795268337210663037843078262128796054074904711001788932070817480935587147153} a^{4} - \frac{627812254627890899676570292722082954369772806510343535342579664204376526481426931409267231537169945359144606113898}{1922287289409964449129811547152949064322795268337210663037843078262128796054074904711001788932070817480935587147153} a^{3} - \frac{641066047557954790802336445310360406044730040782615105820788881700873825734639732569396424421359819637506833691632}{1922287289409964449129811547152949064322795268337210663037843078262128796054074904711001788932070817480935587147153} a^{2} - \frac{81662148124079348566220974918210068977274997880491026557771026063955615094997461993428650311936567263967959639047}{174753389946360404466346504286631733120254115303382787548894825296557163277643173155545617175642801589175962467923} a - \frac{375922542970584624058581376470689047947374921603027175151016866180637970816859608984027444066942536422346750451877}{1922287289409964449129811547152949064322795268337210663037843078262128796054074904711001788932070817480935587147153}$
Class group and class number
$C_{4}\times C_{4}$, which has order $16$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 5924611583950000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_4.D_4:C_4$ (as 16T260):
| A solvable group of order 128 |
| The 32 conjugacy class representatives for $C_4.D_4:C_4$ |
| Character table for $C_4.D_4:C_4$ is not computed |
Intermediate fields
| \(\Q(\sqrt{-67}) \), 4.0.399521.1, 8.0.112525057627992329.3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ | $16$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | $16$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{8}$ | $16$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{4}$ | $16$ | ${\href{/LocalNumberField/37.8.0.1}{8} }{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }^{2}$ | $16$ | $16$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }^{2}$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $67$ | 67.8.6.2 | $x^{8} + 1541 x^{4} + 646416$ | $4$ | $2$ | $6$ | $Q_8$ | $[\ ]_{4}^{2}$ |
| 67.8.6.2 | $x^{8} + 1541 x^{4} + 646416$ | $4$ | $2$ | $6$ | $Q_8$ | $[\ ]_{4}^{2}$ | |
| $89$ | 89.4.3.3 | $x^{4} + 267$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 89.4.3.4 | $x^{4} + 2403$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 89.8.7.2 | $x^{8} - 801$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ |