Normalized defining polynomial
\( x^{16} - x^{15} - 2 x^{14} + x^{13} - 7 x^{12} - 61 x^{11} + 110 x^{10} + 85 x^{9} - 59 x^{8} + 340 x^{7} + 1760 x^{6} - 3904 x^{5} - 1792 x^{4} + 1024 x^{3} - 8192 x^{2} - 16384 x + 65536 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1795856326022129150390625=3^{12}\cdot 5^{12}\cdot 7^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $32.80$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 5, 7$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{4} a^{9} - \frac{1}{4} a^{8} - \frac{1}{2} a^{7} + \frac{1}{4} a^{6} + \frac{1}{4} a^{5} - \frac{1}{4} a^{4} - \frac{1}{2} a^{3} + \frac{1}{4} a^{2} + \frac{1}{4} a$, $\frac{1}{16} a^{10} - \frac{1}{16} a^{9} - \frac{1}{8} a^{8} + \frac{1}{16} a^{7} - \frac{7}{16} a^{6} + \frac{3}{16} a^{5} - \frac{1}{8} a^{4} + \frac{5}{16} a^{3} + \frac{5}{16} a^{2} + \frac{1}{4} a$, $\frac{1}{64} a^{11} - \frac{1}{64} a^{10} - \frac{1}{32} a^{9} + \frac{1}{64} a^{8} - \frac{7}{64} a^{7} + \frac{3}{64} a^{6} - \frac{9}{32} a^{5} + \frac{21}{64} a^{4} + \frac{5}{64} a^{3} + \frac{5}{16} a^{2} - \frac{1}{2} a$, $\frac{1}{1280} a^{12} + \frac{7}{1280} a^{11} - \frac{1}{128} a^{10} - \frac{3}{256} a^{9} + \frac{1}{1280} a^{8} + \frac{79}{256} a^{7} - \frac{317}{640} a^{6} - \frac{63}{256} a^{5} + \frac{621}{1280} a^{4} + \frac{19}{64} a^{3} - \frac{1}{2} a^{2} + \frac{7}{20} a + \frac{1}{5}$, $\frac{1}{209920} a^{13} + \frac{67}{209920} a^{12} - \frac{23}{20992} a^{11} + \frac{5}{41984} a^{10} + \frac{381}{209920} a^{9} + \frac{14811}{41984} a^{8} - \frac{16307}{104960} a^{7} + \frac{7561}{41984} a^{6} - \frac{32359}{209920} a^{5} - \frac{2147}{5248} a^{4} - \frac{83}{2624} a^{3} - \frac{1553}{3280} a^{2} - \frac{71}{205} a + \frac{18}{41}$, $\frac{1}{839680} a^{14} - \frac{1}{839680} a^{13} - \frac{97}{419840} a^{12} - \frac{4671}{839680} a^{11} + \frac{5241}{839680} a^{10} + \frac{84227}{839680} a^{9} - \frac{39081}{419840} a^{8} - \frac{181483}{839680} a^{7} + \frac{415813}{839680} a^{6} - \frac{16667}{209920} a^{5} - \frac{5759}{26240} a^{4} - \frac{853}{13120} a^{3} + \frac{17}{80} a^{2} + \frac{81}{410} a - \frac{13}{205}$, $\frac{1}{16793600} a^{15} - \frac{9}{16793600} a^{14} - \frac{1}{1679360} a^{13} + \frac{801}{16793600} a^{12} - \frac{2119}{671744} a^{11} - \frac{2061}{409600} a^{10} + \frac{661219}{8396800} a^{9} + \frac{1294261}{16793600} a^{8} - \frac{7191747}{16793600} a^{7} - \frac{1768201}{4198400} a^{6} - \frac{218513}{1049600} a^{5} - \frac{7389}{26240} a^{4} - \frac{1547}{65600} a^{3} - \frac{147}{820} a^{2} - \frac{837}{4100} a + \frac{278}{1025}$
Class group and class number
$C_{4}\times C_{8}$, which has order $32$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{1281}{3358720} a^{15} + \frac{831}{3358720} a^{14} - \frac{1281}{1679360} a^{13} + \frac{1281}{3358720} a^{12} - \frac{8967}{3358720} a^{11} - \frac{78141}{3358720} a^{10} - \frac{15337}{1679360} a^{9} + \frac{21777}{671744} a^{8} - \frac{75579}{3358720} a^{7} + \frac{21777}{167936} a^{6} + \frac{14091}{20992} a^{5} + \frac{6573}{26240} a^{4} - \frac{8967}{13120} a^{3} + \frac{1281}{3280} a^{2} - \frac{1281}{410} a - \frac{1281}{205} \) (order $10$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 103783.231276 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 16 |
| The 10 conjugacy class representatives for $C_4:C_4$ |
| Character table for $C_4:C_4$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ | R | R | R | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.1.0.1}{1} }^{16}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 3 | Data not computed | ||||||
| $5$ | 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 7 | Data not computed | ||||||