Normalized defining polynomial
\( x^{16} - 5 x^{15} + 27 x^{14} - 114 x^{13} + 254 x^{12} - 531 x^{11} + 1034 x^{10} - 878 x^{9} + 2007 x^{8} - 1492 x^{7} + 944 x^{6} - 3627 x^{5} + 1796 x^{4} - 4920 x^{3} + 10695 x^{2} - 8425 x + 7795 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1795856326022129150390625=3^{12}\cdot 5^{12}\cdot 7^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $32.80$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 5, 7$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{10} a^{12} + \frac{1}{5} a^{11} + \frac{1}{5} a^{10} - \frac{1}{2} a^{9} - \frac{2}{5} a^{8} + \frac{3}{10} a^{6} - \frac{2}{5} a^{5} - \frac{2}{5} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2}$, $\frac{1}{10} a^{13} - \frac{1}{5} a^{11} + \frac{1}{10} a^{10} - \frac{2}{5} a^{9} - \frac{1}{5} a^{8} + \frac{3}{10} a^{7} + \frac{2}{5} a^{5} + \frac{3}{10} a^{4} - \frac{1}{2} a$, $\frac{1}{2950} a^{14} - \frac{129}{2950} a^{13} + \frac{42}{1475} a^{12} + \frac{1251}{2950} a^{11} + \frac{429}{2950} a^{10} - \frac{633}{1475} a^{9} - \frac{1013}{2950} a^{8} + \frac{133}{2950} a^{7} + \frac{561}{1475} a^{6} - \frac{807}{2950} a^{5} - \frac{1421}{2950} a^{4} - \frac{14}{59} a^{3} - \frac{137}{590} a^{2} - \frac{141}{590} a + \frac{103}{295}$, $\frac{1}{75625451994302076159821834050} a^{15} + \frac{7397179726960133868029339}{75625451994302076159821834050} a^{14} - \frac{217710800194560752722393093}{75625451994302076159821834050} a^{13} - \frac{663373189579605603158240536}{37812725997151038079910917025} a^{12} + \frac{32607637882668528912858972087}{75625451994302076159821834050} a^{11} - \frac{19312557208569529943668018019}{75625451994302076159821834050} a^{10} + \frac{14043320932391640514146749547}{37812725997151038079910917025} a^{9} - \frac{16088557497369196096251554501}{75625451994302076159821834050} a^{8} + \frac{4437943816946005073030543451}{75625451994302076159821834050} a^{7} + \frac{5952262124318983471922883367}{37812725997151038079910917025} a^{6} + \frac{29425913622848833106945082423}{75625451994302076159821834050} a^{5} - \frac{30782835161555778587057887853}{75625451994302076159821834050} a^{4} + \frac{884442371521452771580248539}{7562545199430207615982183405} a^{3} - \frac{3238134963723597839271553767}{15125090398860415231964366810} a^{2} - \frac{5111022065972376394123141787}{15125090398860415231964366810} a + \frac{6998805927250395598108653563}{15125090398860415231964366810}$
Class group and class number
$C_{4}\times C_{8}$, which has order $32$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 14409.2792961 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 16 |
| The 10 conjugacy class representatives for $C_4:C_4$ |
| Character table for $C_4:C_4$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ | R | R | R | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.1.0.1}{1} }^{16}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 3 | Data not computed | ||||||
| $5$ | 5.4.3.1 | $x^{4} - 5$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 5.4.3.1 | $x^{4} - 5$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.4.3.1 | $x^{4} - 5$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.4.3.1 | $x^{4} - 5$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 7 | Data not computed | ||||||