Normalized defining polynomial
\( x^{16} - 5 x^{15} + 21 x^{14} - 30 x^{13} + 50 x^{12} + 75 x^{11} + 674 x^{10} + 700 x^{9} + 1239 x^{8} - 700 x^{7} + 674 x^{6} - 75 x^{5} + 50 x^{4} + 30 x^{3} + 21 x^{2} + 5 x + 1 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1795856326022129150390625=3^{12}\cdot 5^{12}\cdot 7^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $32.80$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 5, 7$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{118} a^{12} - \frac{18}{59} a^{11} + \frac{7}{59} a^{10} - \frac{7}{118} a^{9} - \frac{26}{59} a^{8} - \frac{6}{59} a^{7} - \frac{25}{118} a^{6} + \frac{6}{59} a^{5} - \frac{26}{59} a^{4} + \frac{7}{118} a^{3} + \frac{7}{59} a^{2} + \frac{18}{59} a + \frac{1}{118}$, $\frac{1}{118} a^{13} + \frac{8}{59} a^{11} + \frac{25}{118} a^{10} + \frac{25}{59} a^{9} + \frac{2}{59} a^{8} + \frac{15}{118} a^{7} + \frac{28}{59} a^{6} + \frac{13}{59} a^{5} + \frac{23}{118} a^{4} + \frac{15}{59} a^{3} - \frac{25}{59} a^{2} - \frac{1}{118} a + \frac{18}{59}$, $\frac{1}{48660958} a^{14} + \frac{2235}{48660958} a^{13} + \frac{28925}{24330479} a^{12} + \frac{14119525}{48660958} a^{11} + \frac{13429297}{48660958} a^{10} + \frac{2564036}{24330479} a^{9} + \frac{4778495}{48660958} a^{8} + \frac{21279195}{48660958} a^{7} - \frac{7131629}{24330479} a^{6} + \frac{13788073}{48660958} a^{5} + \frac{17911659}{48660958} a^{4} + \frac{1492619}{24330479} a^{3} + \frac{11901199}{48660958} a^{2} + \frac{18971761}{48660958} a + \frac{11752858}{24330479}$, $\frac{1}{58441810558} a^{15} - \frac{27}{29220905279} a^{14} - \frac{25677115}{58441810558} a^{13} - \frac{85335756}{29220905279} a^{12} + \frac{13212981677}{29220905279} a^{11} - \frac{17530917903}{58441810558} a^{10} - \frac{2743934034}{29220905279} a^{9} + \frac{1944715782}{29220905279} a^{8} - \frac{2126586661}{58441810558} a^{7} + \frac{4656892898}{29220905279} a^{6} - \frac{490303383}{29220905279} a^{5} - \frac{6972070665}{58441810558} a^{4} + \frac{13201083341}{29220905279} a^{3} - \frac{1248666376}{29220905279} a^{2} - \frac{3662523005}{58441810558} a + \frac{728267135}{58441810558}$
Class group and class number
$C_{2}\times C_{2}\times C_{2}$, which has order $8$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{475552}{10699709} a^{15} + \frac{7046945712}{29220905279} a^{14} - \frac{29813472528}{29220905279} a^{13} + \frac{49267848889}{29220905279} a^{12} - \frac{75808903632}{29220905279} a^{11} - \frac{80693067840}{29220905279} a^{10} - \frac{815626832048}{29220905279} a^{9} - \frac{530576321520}{29220905279} a^{8} - \frac{1079591379576}{29220905279} a^{7} + \frac{1635447771664}{29220905279} a^{6} - \frac{1067654960400}{29220905279} a^{5} + \frac{116001096288}{29220905279} a^{4} + \frac{217724831632}{29220905279} a^{3} - \frac{259621433400}{29220905279} a^{2} + \frac{33191877264}{29220905279} a + \frac{5496253264}{29220905279} \) (order $10$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 120012.452011 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 16 |
| The 10 conjugacy class representatives for $C_4:C_4$ |
| Character table for $C_4:C_4$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ | R | R | R | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 3 | Data not computed | ||||||
| $5$ | 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |
| 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| 7 | Data not computed | ||||||