Normalized defining polynomial
\( x^{16} - 2 x^{15} - 2 x^{14} + 7 x^{13} + 78 x^{12} + 58 x^{11} + 1189 x^{10} + 5376 x^{9} + 12238 x^{8} + 47763 x^{7} + 203726 x^{6} + 650220 x^{5} + 1486133 x^{4} + 2191586 x^{3} + 1857092 x^{2} + 783912 x + 126736 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1795856326022129150390625=3^{12}\cdot 5^{12}\cdot 7^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $32.80$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 5, 7$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{3} a^{12} + \frac{1}{3} a^{10} - \frac{1}{3} a^{9} + \frac{1}{3} a^{6} + \frac{1}{3} a^{4} + \frac{1}{3} a^{3} - \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{6} a^{13} - \frac{1}{3} a^{11} - \frac{1}{6} a^{10} + \frac{1}{6} a^{7} - \frac{1}{3} a^{5} + \frac{1}{6} a^{4} + \frac{1}{3} a^{2} + \frac{1}{6} a$, $\frac{1}{12} a^{14} - \frac{1}{6} a^{12} - \frac{1}{12} a^{11} - \frac{1}{2} a^{9} + \frac{1}{12} a^{8} - \frac{1}{2} a^{7} - \frac{1}{6} a^{6} - \frac{5}{12} a^{5} - \frac{1}{3} a^{3} + \frac{1}{12} a^{2}$, $\frac{1}{3547512197182954396582867965714641496519096} a^{15} + \frac{839951128405993371147480626288664339071}{22452608842930091117613088390598996813412} a^{14} - \frac{47640722059489966134878877495291754892219}{591252032863825732763811327619106916086516} a^{13} - \frac{156632085890642710215686279418973220768091}{1182504065727651465527622655238213832173032} a^{12} + \frac{883560477366088511420353600315092859655441}{1773756098591477198291433982857320748259548} a^{11} + \frac{422123273543488632259076322432084118040897}{1773756098591477198291433982857320748259548} a^{10} + \frac{111165818267916071306834088023588503196149}{3547512197182954396582867965714641496519096} a^{9} + \frac{262778872816037560923191347249783748242099}{886878049295738599145716991428660374129774} a^{8} - \frac{64713293162889127765501549594951145128923}{591252032863825732763811327619106916086516} a^{7} - \frac{1049704783890366481809088408267589250615229}{3547512197182954396582867965714641496519096} a^{6} + \frac{26292362805020772454680211651989146771483}{591252032863825732763811327619106916086516} a^{5} - \frac{55279078922529075683606152698359999610917}{886878049295738599145716991428660374129774} a^{4} - \frac{63148254881874959881212316949062728879305}{1182504065727651465527622655238213832173032} a^{3} - \frac{87449107666020476829152826702030113577977}{1773756098591477198291433982857320748259548} a^{2} - \frac{299972907241698817690820672726092246048801}{886878049295738599145716991428660374129774} a + \frac{313585228953152052281505151037805899332}{1660820317033218350460144178705356505861}$
Class group and class number
$C_{2}\times C_{2}\times C_{2}$, which has order $8$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{6100711299731842774139}{45181082526140886223445544} a^{15} - \frac{107562345021881698805}{285956218519879026730668} a^{14} + \frac{379516813607605402025}{7530180421023481037240924} a^{13} + \frac{36522649202226018599485}{45181082526140886223445544} a^{12} + \frac{226327852273036162947745}{22590541263070443111722772} a^{11} - \frac{330611994203806231245}{7530180421023481037240924} a^{10} + \frac{7340328745359291285567775}{45181082526140886223445544} a^{9} + \frac{3366624954666858097741090}{5647635315767610777930693} a^{8} + \frac{9164614295178724532149905}{7530180421023481037240924} a^{7} + \frac{251411701475677728162571985}{45181082526140886223445544} a^{6} + \frac{175349825550361851902795067}{7530180421023481037240924} a^{5} + \frac{132473313605464377369222870}{1882545105255870259310231} a^{4} + \frac{6719958096492159625825796455}{45181082526140886223445544} a^{3} + \frac{4255672070119127493986839415}{22590541263070443111722772} a^{2} + \frac{226391915985742289672281910}{1882545105255870259310231} a + \frac{1796882055842400276475006}{63456576581658548066637} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 103783.231276 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times Q_8$ (as 16T7):
| A solvable group of order 16 |
| The 10 conjugacy class representatives for $D_8$ |
| Character table for $D_8$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ | R | R | R | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.8.6.1 | $x^{8} + 9 x^{4} + 36$ | $4$ | $2$ | $6$ | $Q_8$ | $[\ ]_{4}^{2}$ |
| 3.8.6.1 | $x^{8} + 9 x^{4} + 36$ | $4$ | $2$ | $6$ | $Q_8$ | $[\ ]_{4}^{2}$ | |
| $5$ | 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |
| 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| $7$ | 7.8.6.1 | $x^{8} + 35 x^{4} + 441$ | $4$ | $2$ | $6$ | $Q_8$ | $[\ ]_{4}^{2}$ |
| 7.8.6.1 | $x^{8} + 35 x^{4} + 441$ | $4$ | $2$ | $6$ | $Q_8$ | $[\ ]_{4}^{2}$ |