Properties

Label 16.0.17857939048...0000.2
Degree $16$
Signature $[0, 8]$
Discriminant $2^{16}\cdot 5^{8}\cdot 17^{8}$
Root discriminant $18.44$
Ramified primes $2, 5, 17$
Class number $2$
Class group $[2]$
Galois group $C_8:C_2^2$ (as 16T38)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![25, 60, -149, -334, 387, 166, 233, 72, -52, -8, 1, -44, 11, -14, 6, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^16 + 6*x^14 - 14*x^13 + 11*x^12 - 44*x^11 + x^10 - 8*x^9 - 52*x^8 + 72*x^7 + 233*x^6 + 166*x^5 + 387*x^4 - 334*x^3 - 149*x^2 + 60*x + 25)
 
gp: K = bnfinit(x^16 + 6*x^14 - 14*x^13 + 11*x^12 - 44*x^11 + x^10 - 8*x^9 - 52*x^8 + 72*x^7 + 233*x^6 + 166*x^5 + 387*x^4 - 334*x^3 - 149*x^2 + 60*x + 25, 1)
 

Normalized defining polynomial

\( x^{16} + 6 x^{14} - 14 x^{13} + 11 x^{12} - 44 x^{11} + x^{10} - 8 x^{9} - 52 x^{8} + 72 x^{7} + 233 x^{6} + 166 x^{5} + 387 x^{4} - 334 x^{3} - 149 x^{2} + 60 x + 25 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $16$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 8]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(178579390489600000000=2^{16}\cdot 5^{8}\cdot 17^{8}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $18.44$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 5, 17$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{10} - \frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{11} - \frac{1}{2} a^{9} - \frac{1}{2} a^{7} - \frac{1}{2} a$, $\frac{1}{2} a^{14} - \frac{1}{2} a^{6} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{113231384105513265370} a^{15} + \frac{2035993380652910519}{22646276821102653074} a^{14} - \frac{7965472526165726862}{56615692052756632685} a^{13} + \frac{7604055724199925121}{113231384105513265370} a^{12} + \frac{6363900688507630478}{56615692052756632685} a^{11} + \frac{42259533256891800601}{113231384105513265370} a^{10} + \frac{24533663320813162748}{56615692052756632685} a^{9} - \frac{32442309480766435473}{113231384105513265370} a^{8} - \frac{36488939578269075517}{113231384105513265370} a^{7} - \frac{15257303117374333644}{56615692052756632685} a^{6} + \frac{18159222251487407854}{56615692052756632685} a^{5} - \frac{20915913866854370152}{56615692052756632685} a^{4} + \frac{449949048997781263}{1919176001788360430} a^{3} - \frac{54917795532952361259}{113231384105513265370} a^{2} + \frac{304270655947942419}{1919176001788360430} a - \frac{4711873428372107228}{11323138410551326537}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{2}$, which has order $2$

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $7$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( \frac{1949310351}{252035732602} a^{15} - \frac{4014779389}{252035732602} a^{14} + \frac{5232081684}{126017866301} a^{13} - \frac{53291192845}{252035732602} a^{12} + \frac{34262083189}{126017866301} a^{11} - \frac{127629788021}{252035732602} a^{10} + \frac{87417909717}{126017866301} a^{9} + \frac{8957863601}{252035732602} a^{8} - \frac{13147662969}{252035732602} a^{7} + \frac{201833104287}{126017866301} a^{6} + \frac{139413194337}{126017866301} a^{5} - \frac{226486245937}{126017866301} a^{4} - \frac{1111310405}{4271792078} a^{3} - \frac{2427397588895}{252035732602} a^{2} + \frac{9822129575}{4271792078} a + \frac{224658249032}{126017866301} \) (order $4$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 3648.14002353 \)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_8:C_2^2$ (as 16T38):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 32
The 11 conjugacy class representatives for $C_8:C_2^2$
Character table for $C_8:C_2^2$

Intermediate fields

\(\Q(\sqrt{-1}) \), \(\Q(\sqrt{85}) \), \(\Q(\sqrt{-85}) \), 4.0.272.1, 4.0.6800.1, \(\Q(i, \sqrt{85})\), 8.0.31443200.2, 8.0.31443200.1, 8.0.13363360000.4

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Galois closure: data not computed
Degree 8 siblings: data not computed
Degree 16 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ R ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ R ${\href{/LocalNumberField/19.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/37.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{4}$ ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/53.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.8.8.1$x^{8} + 28 x^{4} + 144$$2$$4$$8$$C_4\times C_2$$[2]^{4}$
2.8.8.1$x^{8} + 28 x^{4} + 144$$2$$4$$8$$C_4\times C_2$$[2]^{4}$
$5$5.2.1.2$x^{2} + 10$$2$$1$$1$$C_2$$[\ ]_{2}$
5.2.1.2$x^{2} + 10$$2$$1$$1$$C_2$$[\ ]_{2}$
5.4.2.1$x^{4} + 15 x^{2} + 100$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
5.4.2.1$x^{4} + 15 x^{2} + 100$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
5.4.2.1$x^{4} + 15 x^{2} + 100$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
$17$17.2.1.2$x^{2} + 51$$2$$1$$1$$C_2$$[\ ]_{2}$
17.2.1.2$x^{2} + 51$$2$$1$$1$$C_2$$[\ ]_{2}$
17.4.2.1$x^{4} + 85 x^{2} + 2601$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
17.4.2.1$x^{4} + 85 x^{2} + 2601$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
17.4.2.1$x^{4} + 85 x^{2} + 2601$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$