Normalized defining polynomial
\( x^{16} - 8 x^{15} + 54 x^{14} - 238 x^{13} + 1036 x^{12} - 3486 x^{11} + 11912 x^{10} - 32324 x^{9} + 91167 x^{8} - 201062 x^{7} + 475958 x^{6} - 829962 x^{5} + 1646891 x^{4} - 2095374 x^{3} + 3402871 x^{2} - 2467436 x + 3167221 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1782866513792016000000000000=2^{16}\cdot 3^{8}\cdot 5^{12}\cdot 19^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $50.49$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 19$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(1140=2^{2}\cdot 3\cdot 5\cdot 19\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{1140}(1,·)$, $\chi_{1140}(1027,·)$, $\chi_{1140}(77,·)$, $\chi_{1140}(911,·)$, $\chi_{1140}(721,·)$, $\chi_{1140}(533,·)$, $\chi_{1140}(343,·)$, $\chi_{1140}(797,·)$, $\chi_{1140}(607,·)$, $\chi_{1140}(419,·)$, $\chi_{1140}(229,·)$, $\chi_{1140}(1063,·)$, $\chi_{1140}(113,·)$, $\chi_{1140}(1139,·)$, $\chi_{1140}(949,·)$, $\chi_{1140}(191,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $\frac{1}{29} a^{13} + \frac{8}{29} a^{12} + \frac{8}{29} a^{11} + \frac{13}{29} a^{10} - \frac{5}{29} a^{9} - \frac{1}{29} a^{8} + \frac{10}{29} a^{7} - \frac{9}{29} a^{6} + \frac{14}{29} a^{5} - \frac{1}{29} a^{4} - \frac{11}{29} a^{3} - \frac{2}{29} a^{2} + \frac{2}{29}$, $\frac{1}{14745812611919141} a^{14} - \frac{7}{14745812611919141} a^{13} + \frac{6454258592663777}{14745812611919141} a^{12} + \frac{5511886279774852}{14745812611919141} a^{11} + \frac{2737134566943659}{14745812611919141} a^{10} + \frac{2144859687648196}{14745812611919141} a^{9} - \frac{1333945444023242}{14745812611919141} a^{8} - \frac{5885877719949114}{14745812611919141} a^{7} - \frac{4594343200086883}{14745812611919141} a^{6} - \frac{1018342896207646}{14745812611919141} a^{5} - \frac{1422392925042460}{14745812611919141} a^{4} - \frac{875532519242759}{14745812611919141} a^{3} - \frac{2177700863097423}{14745812611919141} a^{2} + \frac{459996440619049}{14745812611919141} a + \frac{3273618762534704}{14745812611919141}$, $\frac{1}{210113083907235840109} a^{15} + \frac{7117}{210113083907235840109} a^{14} + \frac{121502924299441738}{7245278755421925521} a^{13} - \frac{81976477840629932482}{210113083907235840109} a^{12} - \frac{34044731409591128829}{210113083907235840109} a^{11} + \frac{96853956666346386766}{210113083907235840109} a^{10} + \frac{54405389044346758883}{210113083907235840109} a^{9} - \frac{93051568811917899822}{210113083907235840109} a^{8} - \frac{36270652795655811230}{210113083907235840109} a^{7} + \frac{34455887722558071548}{210113083907235840109} a^{6} + \frac{95673234179766030719}{210113083907235840109} a^{5} + \frac{40731423636144867716}{210113083907235840109} a^{4} + \frac{55417347449158080543}{210113083907235840109} a^{3} - \frac{84155747137045986487}{210113083907235840109} a^{2} + \frac{86520400456016190725}{210113083907235840109} a - \frac{45718126108411224137}{210113083907235840109}$
Class group and class number
$C_{2}\times C_{4}\times C_{16}\times C_{16}$, which has order $2048$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 3121.7160224989234 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2\times C_4$ (as 16T2):
| An abelian group of order 16 |
| The 16 conjugacy class representatives for $C_4\times C_2^2$ |
| Character table for $C_4\times C_2^2$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.8.1 | $x^{8} + 28 x^{4} + 144$ | $2$ | $4$ | $8$ | $C_4\times C_2$ | $[2]^{4}$ |
| 2.8.8.1 | $x^{8} + 28 x^{4} + 144$ | $2$ | $4$ | $8$ | $C_4\times C_2$ | $[2]^{4}$ | |
| $3$ | 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $5$ | 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |
| 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| $19$ | 19.4.2.1 | $x^{4} + 57 x^{2} + 1444$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 19.4.2.1 | $x^{4} + 57 x^{2} + 1444$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 19.4.2.1 | $x^{4} + 57 x^{2} + 1444$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 19.4.2.1 | $x^{4} + 57 x^{2} + 1444$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |