Properties

Label 16.0.17799859074...5625.1
Degree $16$
Signature $[0, 8]$
Discriminant $3^{12}\cdot 5^{6}\cdot 11^{8}$
Root discriminant $13.82$
Ramified primes $3, 5, 11$
Class number $1$
Class group Trivial
Galois group $C_2\times D_8$ (as 16T29)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![3, -6, 6, -18, 22, -22, 45, -32, 49, -30, 52, -24, 27, -13, 10, -3, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^16 - 3*x^15 + 10*x^14 - 13*x^13 + 27*x^12 - 24*x^11 + 52*x^10 - 30*x^9 + 49*x^8 - 32*x^7 + 45*x^6 - 22*x^5 + 22*x^4 - 18*x^3 + 6*x^2 - 6*x + 3)
 
gp: K = bnfinit(x^16 - 3*x^15 + 10*x^14 - 13*x^13 + 27*x^12 - 24*x^11 + 52*x^10 - 30*x^9 + 49*x^8 - 32*x^7 + 45*x^6 - 22*x^5 + 22*x^4 - 18*x^3 + 6*x^2 - 6*x + 3, 1)
 

Normalized defining polynomial

\( x^{16} - 3 x^{15} + 10 x^{14} - 13 x^{13} + 27 x^{12} - 24 x^{11} + 52 x^{10} - 30 x^{9} + 49 x^{8} - 32 x^{7} + 45 x^{6} - 22 x^{5} + 22 x^{4} - 18 x^{3} + 6 x^{2} - 6 x + 3 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $16$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 8]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(1779985907461265625=3^{12}\cdot 5^{6}\cdot 11^{8}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $13.82$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $3, 5, 11$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{11} a^{12} + \frac{2}{11} a^{11} - \frac{4}{11} a^{10} - \frac{5}{11} a^{9} + \frac{4}{11} a^{8} + \frac{2}{11} a^{7} - \frac{2}{11} a^{6} + \frac{5}{11} a^{5} + \frac{5}{11} a^{4} - \frac{1}{11} a^{3} - \frac{1}{11} a - \frac{2}{11}$, $\frac{1}{11} a^{13} + \frac{3}{11} a^{11} + \frac{3}{11} a^{10} + \frac{3}{11} a^{9} + \frac{5}{11} a^{8} + \frac{5}{11} a^{7} - \frac{2}{11} a^{6} - \frac{5}{11} a^{5} + \frac{2}{11} a^{3} - \frac{1}{11} a^{2} + \frac{4}{11}$, $\frac{1}{55} a^{14} + \frac{2}{55} a^{13} + \frac{2}{55} a^{12} - \frac{4}{55} a^{11} - \frac{9}{55} a^{10} - \frac{17}{55} a^{9} - \frac{1}{5} a^{8} + \frac{6}{55} a^{7} - \frac{18}{55} a^{6} - \frac{3}{11} a^{5} + \frac{19}{55} a^{4} - \frac{7}{55} a^{3} + \frac{4}{11} a^{2} - \frac{17}{55} a + \frac{21}{55}$, $\frac{1}{307285} a^{15} + \frac{717}{307285} a^{14} - \frac{8928}{307285} a^{13} + \frac{8051}{307285} a^{12} - \frac{58429}{307285} a^{11} - \frac{77012}{307285} a^{10} - \frac{131701}{307285} a^{9} - \frac{80404}{307285} a^{8} - \frac{98903}{307285} a^{7} - \frac{27593}{61457} a^{6} + \frac{13279}{307285} a^{5} - \frac{76717}{307285} a^{4} - \frac{25210}{61457} a^{3} - \frac{6377}{307285} a^{2} - \frac{149769}{307285} a - \frac{14326}{61457}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $7$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -\frac{3}{11} a^{15} + \frac{37}{55} a^{14} - \frac{11}{5} a^{13} + \frac{94}{55} a^{12} - \frac{238}{55} a^{11} + \frac{37}{55} a^{10} - \frac{434}{55} a^{9} - \frac{152}{55} a^{8} - \frac{268}{55} a^{7} - \frac{166}{55} a^{6} - \frac{67}{11} a^{5} - \frac{167}{55} a^{4} - \frac{74}{55} a^{3} + \frac{1}{11} a^{2} + \frac{21}{55} a + \frac{47}{55} \) (order $6$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 1469.71837707 \)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_2\times D_8$ (as 16T29):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 32
The 14 conjugacy class representatives for $C_2\times D_8$
Character table for $C_2\times D_8$

Intermediate fields

\(\Q(\sqrt{33}) \), \(\Q(\sqrt{-11}) \), \(\Q(\sqrt{-3}) \), 4.0.605.1, 4.0.5445.1, \(\Q(\sqrt{-3}, \sqrt{-11})\), 8.0.1334161125.2, 8.0.1334161125.1, 8.0.29648025.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Galois closure: data not computed
Degree 16 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ R R ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ R ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/19.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/23.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/37.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{4}$ ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/53.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$3$3.4.3.1$x^{4} + 3$$4$$1$$3$$D_{4}$$[\ ]_{4}^{2}$
3.4.3.1$x^{4} + 3$$4$$1$$3$$D_{4}$$[\ ]_{4}^{2}$
3.8.6.2$x^{8} + 4 x^{7} + 14 x^{6} + 28 x^{5} + 43 x^{4} + 44 x^{3} + 110 x^{2} + 92 x + 22$$4$$2$$6$$D_4$$[\ ]_{4}^{2}$
$5$5.2.0.1$x^{2} - x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
5.2.0.1$x^{2} - x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
5.4.2.1$x^{4} + 15 x^{2} + 100$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
5.4.2.1$x^{4} + 15 x^{2} + 100$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
5.4.2.1$x^{4} + 15 x^{2} + 100$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
$11$11.4.2.1$x^{4} + 143 x^{2} + 5929$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
11.4.2.1$x^{4} + 143 x^{2} + 5929$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
11.4.2.1$x^{4} + 143 x^{2} + 5929$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
11.4.2.1$x^{4} + 143 x^{2} + 5929$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$