Normalized defining polynomial
\( x^{16} - 4 x^{15} + 168 x^{14} - 352 x^{13} + 11378 x^{12} - 7312 x^{11} + 430056 x^{10} + 191104 x^{9} + 10154778 x^{8} + 11990232 x^{7} + 151448504 x^{6} + 234650416 x^{5} + 1339583508 x^{4} + 2029216704 x^{3} + 5894282792 x^{2} + 6112206352 x + 6648587356 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(177691244381492740096000000000000=2^{44}\cdot 5^{12}\cdot 11^{4}\cdot 41^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $103.66$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 11, 41$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8}$, $\frac{1}{2} a^{9}$, $\frac{1}{2} a^{10}$, $\frac{1}{2} a^{11}$, $\frac{1}{2} a^{12}$, $\frac{1}{2} a^{13}$, $\frac{1}{22} a^{14} - \frac{1}{22} a^{12} - \frac{2}{11} a^{11} + \frac{3}{22} a^{10} - \frac{1}{11} a^{9} + \frac{1}{11} a^{8} + \frac{3}{11} a^{7} - \frac{5}{11} a^{6} - \frac{4}{11} a^{5} + \frac{3}{11} a^{4} - \frac{5}{11} a^{3} - \frac{5}{11} a^{2} - \frac{1}{11} a - \frac{5}{11}$, $\frac{1}{25652718995472472746354390334069273944893811495557278842980878} a^{15} - \frac{1813140517150060276568143006226059364971755197124935522184}{1166032681612385124834290469730421542949718704343512674680949} a^{14} + \frac{2806606601642800837457845112477895589469905410219328170832087}{25652718995472472746354390334069273944893811495557278842980878} a^{13} + \frac{953546591660854402432653037930227185703830433864264479778018}{12826359497736236373177195167034636972446905747778639421490439} a^{12} + \frac{1329185845977759992666956389294924613977879906924783472126165}{12826359497736236373177195167034636972446905747778639421490439} a^{11} + \frac{1510003553909177030999141806337432717918250825738139788518048}{12826359497736236373177195167034636972446905747778639421490439} a^{10} + \frac{1443994223433092540979585258613188192884511966932456095960917}{12826359497736236373177195167034636972446905747778639421490439} a^{9} + \frac{867173178506718727295283097031240089675175955676878191311199}{12826359497736236373177195167034636972446905747778639421490439} a^{8} + \frac{5694500040933420683969136904019194547877023593197795720278610}{12826359497736236373177195167034636972446905747778639421490439} a^{7} - \frac{3589014668835504196548042154982006396574639386647148462098893}{12826359497736236373177195167034636972446905747778639421490439} a^{6} - \frac{3687206050795525626969598476727955223644705914710154438896312}{12826359497736236373177195167034636972446905747778639421490439} a^{5} - \frac{2227517652303280284405451602129403127737557348167443576246344}{12826359497736236373177195167034636972446905747778639421490439} a^{4} - \frac{4589912305848303188050950121391229618567931265448317296195660}{12826359497736236373177195167034636972446905747778639421490439} a^{3} - \frac{4716004531071149867855138335633804775047505252886249748827377}{12826359497736236373177195167034636972446905747778639421490439} a^{2} + \frac{4856340501675650534618842060961091727039907694561617270479880}{12826359497736236373177195167034636972446905747778639421490439} a - \frac{376145788470984649928350923892868036938060042976071763450238}{1166032681612385124834290469730421542949718704343512674680949}$
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{10892}$, which has order $348544$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 7114.13535725 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^4.C_2^3$ (as 16T203):
| A solvable group of order 128 |
| The 41 conjugacy class representatives for $C_2^4.C_2^3$ |
| Character table for $C_2^4.C_2^3$ is not computed |
Intermediate fields
| \(\Q(\sqrt{2}) \), \(\Q(\sqrt{5}) \), \(\Q(\sqrt{10}) \), \(\Q(\zeta_{20})^+\), 4.4.8000.1, \(\Q(\sqrt{2}, \sqrt{5})\), \(\Q(\zeta_{40})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $5$ | 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |
| 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| $11$ | 11.4.2.2 | $x^{4} - 11 x^{2} + 847$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ |
| 11.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 11.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 11.4.2.2 | $x^{4} - 11 x^{2} + 847$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 41 | Data not computed | ||||||