Normalized defining polynomial
\( x^{16} - 6 x^{15} + 31 x^{14} - 14 x^{13} - 160 x^{12} - 1310 x^{11} + 11738 x^{10} - 22602 x^{9} + 2030 x^{8} + 30444 x^{7} + 300929 x^{6} - 1078216 x^{5} + 4034535 x^{4} - 9955312 x^{3} + 4560832 x^{2} + 10864280 x + 34932400 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1766969156799962667099298073761=23^{8}\cdot 41^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $77.71$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $23, 41$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2} a^{6} - \frac{1}{2} a$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{4}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{5}$, $\frac{1}{10} a^{11} - \frac{1}{10} a^{10} + \frac{1}{10} a^{7} + \frac{1}{10} a^{6} - \frac{3}{10} a^{5} - \frac{1}{10} a^{2} + \frac{1}{5} a$, $\frac{1}{60} a^{12} + \frac{1}{15} a^{10} + \frac{1}{10} a^{8} + \frac{1}{5} a^{7} - \frac{1}{5} a^{6} + \frac{1}{5} a^{5} + \frac{1}{3} a^{4} - \frac{1}{10} a^{3} + \frac{11}{60} a^{2} + \frac{1}{5} a + \frac{1}{3}$, $\frac{1}{60} a^{13} - \frac{1}{30} a^{11} + \frac{1}{10} a^{10} + \frac{1}{10} a^{9} + \frac{1}{5} a^{8} + \frac{1}{5} a^{7} + \frac{1}{10} a^{6} - \frac{11}{30} a^{5} - \frac{1}{10} a^{4} + \frac{11}{60} a^{3} - \frac{1}{5} a^{2} + \frac{2}{15} a$, $\frac{1}{1106760} a^{14} - \frac{351}{73784} a^{13} + \frac{1021}{184460} a^{12} - \frac{2839}{92230} a^{11} - \frac{17677}{276690} a^{10} - \frac{12173}{184460} a^{9} + \frac{81}{802} a^{8} - \frac{23267}{184460} a^{7} - \frac{43303}{276690} a^{6} - \frac{1922}{46115} a^{5} + \frac{6767}{368920} a^{4} + \frac{16263}{73784} a^{3} - \frac{6835}{18446} a^{2} - \frac{776}{2005} a - \frac{421}{1203}$, $\frac{1}{24953327709720219139646762541744402499076703480} a^{15} - \frac{1291591898516305174668363890309045427437}{3119165963715027392455845317718050312384587935} a^{14} + \frac{5849287937236638073214594229374891100132011}{1084927291726966049549859240945408804307682760} a^{13} + \frac{3061306048720576711251442697790316841924027}{623833192743005478491169063543610062476917587} a^{12} - \frac{83107960866586303019516104650683687666739969}{2079443975810018261637230211812033541589725290} a^{11} - \frac{594985287201188528030219843528048132230081153}{4158887951620036523274460423624067083179450580} a^{10} + \frac{83290939723922169856314562038061829373572379}{831777590324007304654892084724813416635890116} a^{9} + \frac{1019873784850641348876491943901767776546939531}{4158887951620036523274460423624067083179450580} a^{8} + \frac{672864277241092343976662486375139321462203419}{12476663854860109569823381270872201249538351740} a^{7} - \frac{657403289938728857431375053693356247161783632}{3119165963715027392455845317718050312384587935} a^{6} - \frac{178980518604700404962310703067508639355038227}{4990665541944043827929352508348880499815340696} a^{5} + \frac{3744712368732495874486202182838593412833996541}{12476663854860109569823381270872201249538351740} a^{4} + \frac{2971913337858020723042301303835399685400347453}{24953327709720219139646762541744402499076703480} a^{3} + \frac{4550631059084605647853487270662859860124344301}{12476663854860109569823381270872201249538351740} a^{2} + \frac{21702042500539102203000049593898627427608324}{45205303821956918731244135039392033512820115} a + \frac{523583461138142021989345460747809322837582}{9041060764391383746248827007878406702564023}$
Class group and class number
$C_{6}\times C_{6}\times C_{12}$, which has order $432$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1119246.56118 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 16 |
| The 7 conjugacy class representatives for $QD_{16}$ |
| Character table for $QD_{16}$ |
Intermediate fields
| \(\Q(\sqrt{-943}) \), \(\Q(\sqrt{41}) \), \(\Q(\sqrt{-23}) \), \(\Q(\sqrt{-23}, \sqrt{41})\), 4.2.38663.1 x2, 4.0.21689.1 x2, 8.0.790763784001.2, 8.2.57794518300247.1 x4 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 8 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/5.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{8}$ | R | ${\href{/LocalNumberField/43.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $23$ | 23.2.1.2 | $x^{2} + 46$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 23.2.1.2 | $x^{2} + 46$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 23.2.1.2 | $x^{2} + 46$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 23.2.1.2 | $x^{2} + 46$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 23.2.1.2 | $x^{2} + 46$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 23.2.1.2 | $x^{2} + 46$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 23.2.1.2 | $x^{2} + 46$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 23.2.1.2 | $x^{2} + 46$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| $41$ | 41.4.3.1 | $x^{4} - 41$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 41.4.3.1 | $x^{4} - 41$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 41.4.3.1 | $x^{4} - 41$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 41.4.3.1 | $x^{4} - 41$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |