Normalized defining polynomial
\( x^{16} + 120 x^{14} - 80 x^{13} + 5779 x^{12} - 4080 x^{11} + 139950 x^{10} - 36380 x^{9} + 1710046 x^{8} + 894240 x^{7} + 11172540 x^{6} + 16447560 x^{5} + 56975359 x^{4} + 108407120 x^{3} + 225613310 x^{2} + 283026660 x + 151994111 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1762476469646556921856000000000000=2^{32}\cdot 5^{12}\cdot 29^{6}\cdot 41^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $119.64$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 29, 41$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{6} a^{11} + \frac{1}{6} a^{10} - \frac{1}{6} a^{9} - \frac{1}{6} a^{8} - \frac{1}{6} a^{7} + \frac{1}{6} a^{6} - \frac{1}{6} a^{5} - \frac{1}{6} a^{4} - \frac{1}{6} a^{3} - \frac{1}{2} a^{2} + \frac{1}{6} a - \frac{1}{6}$, $\frac{1}{12} a^{12} - \frac{1}{6} a^{10} - \frac{1}{2} a^{8} - \frac{1}{3} a^{7} + \frac{1}{3} a^{6} + \frac{1}{3} a^{3} + \frac{1}{3} a^{2} + \frac{1}{3} a - \frac{5}{12}$, $\frac{1}{24} a^{13} - \frac{1}{24} a^{12} + \frac{1}{6} a^{10} - \frac{1}{3} a^{9} - \frac{1}{2} a^{8} + \frac{1}{4} a^{7} + \frac{5}{12} a^{6} + \frac{5}{12} a^{5} - \frac{5}{12} a^{4} + \frac{5}{12} a^{3} + \frac{1}{4} a^{2} - \frac{7}{24} a - \frac{3}{8}$, $\frac{1}{72} a^{14} - \frac{1}{72} a^{13} - \frac{1}{18} a^{11} + \frac{1}{9} a^{10} - \frac{1}{18} a^{9} - \frac{17}{36} a^{8} - \frac{1}{12} a^{7} + \frac{13}{36} a^{6} + \frac{11}{36} a^{5} - \frac{5}{12} a^{4} - \frac{17}{36} a^{3} - \frac{31}{72} a^{2} + \frac{31}{72} a - \frac{2}{9}$, $\frac{1}{326598930092448547117139895078962994347579177338979912208} a^{15} - \frac{781507368397782758527622296372027385658829219676751281}{326598930092448547117139895078962994347579177338979912208} a^{14} - \frac{6380313263690560548016738350791556916253791706680426775}{326598930092448547117139895078962994347579177338979912208} a^{13} - \frac{2815440752314589874006316732913131623443731025279777809}{326598930092448547117139895078962994347579177338979912208} a^{12} - \frac{176598153490477829336209489120828143139781272525581059}{2268048125642003799424582604715020794080410953742916057} a^{11} - \frac{153996626291014677105465668675234705955223235631144023}{13608288753852022796547495628290124764482465722457496342} a^{10} - \frac{20281830549275714550907118642252471046638533291809461195}{54433155015408091186189982513160499057929862889829985368} a^{9} - \frac{26058230324509401579185891419275509379549710334549670897}{163299465046224273558569947539481497173789588669489956104} a^{8} - \frac{19680445013665947378416605837265076603480640084755178457}{40824866261556068389642486884870374293447397167372489026} a^{7} + \frac{1962554546240984768069401250590297742603084787194129432}{20412433130778034194821243442435187146723698583686244513} a^{6} - \frac{24808685822049578616744329012221907403939442718544698725}{81649732523112136779284973769740748586894794334744978052} a^{5} + \frac{12403804453337374808649611287825485927559613527455890525}{81649732523112136779284973769740748586894794334744978052} a^{4} + \frac{1351532370256860523230264067378250149052802572193651793}{12096256670090686930264440558480110901762191753295552304} a^{3} - \frac{9189187890253443014633064177464363393627402897236202131}{326598930092448547117139895078962994347579177338979912208} a^{2} - \frac{107339397300089060580690111792080146612503684415264746335}{326598930092448547117139895078962994347579177338979912208} a + \frac{1708319953405519031377432760246887886367025060449582923}{3669650899915152214799324663808572970197518846505392272}$
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{12}$, which has order $96$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 167965910.802 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^3.C_2^4.C_2$ (as 16T456):
| A solvable group of order 256 |
| The 46 conjugacy class representatives for $C_2^3.C_2^4.C_2$ |
| Character table for $C_2^3.C_2^4.C_2$ is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\sqrt{2}) \), \(\Q(\sqrt{10}) \), 4.0.3625.1, 4.0.232000.1, \(\Q(\sqrt{2}, \sqrt{5})\), 8.0.53824000000.4 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{4}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{4}$ | R | ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.16.16 | $x^{8} + 2 x^{6} + 4 x^{5} + 6 x^{4} + 8 x^{3} + 4$ | $4$ | $2$ | $16$ | $D_4\times C_2$ | $[2, 2, 3]^{2}$ |
| 2.8.16.13 | $x^{8} + 6 x^{6} + 4 x^{5} + 2 x^{4} + 4$ | $4$ | $2$ | $16$ | $D_4\times C_2$ | $[2, 2, 3]^{2}$ | |
| $5$ | 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |
| 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| $29$ | 29.4.0.1 | $x^{4} - x + 19$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 29.4.0.1 | $x^{4} - x + 19$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 29.8.6.2 | $x^{8} + 145 x^{4} + 7569$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| 41 | Data not computed | ||||||