Normalized defining polynomial
\( x^{16} - 8 x^{15} + 36 x^{14} - 112 x^{13} + 284 x^{12} - 612 x^{11} + 1090 x^{10} - 1556 x^{9} + 1775 x^{8} - 1636 x^{7} + 1254 x^{6} - 824 x^{5} + 484 x^{4} - 252 x^{3} + 116 x^{2} - 40 x + 10 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(176120502681600000000=2^{36}\cdot 3^{8}\cdot 5^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $18.42$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{5699} a^{14} - \frac{7}{5699} a^{13} + \frac{979}{5699} a^{12} - \frac{84}{5699} a^{11} + \frac{1313}{5699} a^{10} + \frac{687}{5699} a^{9} + \frac{1046}{5699} a^{8} + \frac{2454}{5699} a^{7} + \frac{604}{5699} a^{6} - \frac{623}{5699} a^{5} - \frac{1168}{5699} a^{4} - \frac{1146}{5699} a^{3} + \frac{1043}{5699} a^{2} + \frac{600}{5699} a - \frac{60}{5699}$, $\frac{1}{2741219} a^{15} + \frac{233}{2741219} a^{14} - \frac{724474}{2741219} a^{13} + \frac{63221}{210863} a^{12} + \frac{1234933}{2741219} a^{11} + \frac{1353025}{2741219} a^{10} + \frac{80441}{2741219} a^{9} + \frac{1159635}{2741219} a^{8} + \frac{179236}{2741219} a^{7} - \frac{300185}{2741219} a^{6} - \frac{1102421}{2741219} a^{5} - \frac{1369975}{2741219} a^{4} + \frac{512465}{2741219} a^{3} + \frac{28082}{66859} a^{2} + \frac{525773}{2741219} a + \frac{965828}{2741219}$
Class group and class number
$C_{4}$, which has order $4$
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{5424}{5699} a^{14} - \frac{37968}{5699} a^{13} + \frac{152501}{5699} a^{12} - \frac{421422}{5699} a^{11} + \frac{983889}{5699} a^{10} - \frac{1961314}{5699} a^{9} + \frac{3074760}{5699} a^{8} - \frac{3615534}{5699} a^{7} + \frac{3258999}{5699} a^{6} - \frac{2353332}{5699} a^{5} + \frac{1478097}{5699} a^{4} - \frac{824650}{5699} a^{3} + \frac{425550}{5699} a^{2} - \frac{165000}{5699} a + \frac{56393}{5699} \) (order $4$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 8352.98291929 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2\times D_4$ (as 16T25):
| A solvable group of order 32 |
| The 20 conjugacy class representatives for $C_2^2 \times D_4$ |
| Character table for $C_2^2 \times D_4$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 16 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.18.55 | $x^{8} + 2 x^{6} + 4 x^{3} + 10$ | $8$ | $1$ | $18$ | $D_4\times C_2$ | $[2, 2, 3]^{2}$ |
| 2.8.18.55 | $x^{8} + 2 x^{6} + 4 x^{3} + 10$ | $8$ | $1$ | $18$ | $D_4\times C_2$ | $[2, 2, 3]^{2}$ | |
| $3$ | 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $5$ | 5.2.1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 5.2.1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.2.1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.2.1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |