Normalized defining polynomial
\( x^{16} - 4 x^{15} + 10 x^{14} - 8 x^{13} - 12 x^{12} + 72 x^{11} - 52 x^{10} - 60 x^{9} + 187 x^{8} - 60 x^{7} - 52 x^{6} + 72 x^{5} - 12 x^{4} - 8 x^{3} + 10 x^{2} - 4 x + 1 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(176120502681600000000=2^{36}\cdot 3^{8}\cdot 5^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $18.42$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{3} a^{8} + \frac{1}{3} a^{4} + \frac{1}{3}$, $\frac{1}{3} a^{9} + \frac{1}{3} a^{5} + \frac{1}{3} a$, $\frac{1}{3} a^{10} + \frac{1}{3} a^{6} + \frac{1}{3} a^{2}$, $\frac{1}{9} a^{11} - \frac{1}{9} a^{10} - \frac{1}{9} a^{9} + \frac{1}{9} a^{8} + \frac{4}{9} a^{7} + \frac{2}{9} a^{6} - \frac{4}{9} a^{5} - \frac{2}{9} a^{4} - \frac{2}{9} a^{3} - \frac{4}{9} a^{2} + \frac{2}{9} a + \frac{4}{9}$, $\frac{1}{9} a^{12} + \frac{1}{9} a^{10} - \frac{1}{9} a^{8} - \frac{1}{3} a^{7} + \frac{1}{9} a^{6} + \frac{1}{3} a^{5} - \frac{1}{9} a^{4} + \frac{1}{3} a^{3} + \frac{1}{9} a^{2} - \frac{1}{3} a - \frac{2}{9}$, $\frac{1}{9} a^{13} + \frac{1}{9} a^{10} - \frac{1}{9} a^{8} - \frac{1}{3} a^{7} + \frac{1}{9} a^{6} + \frac{1}{3} a^{5} - \frac{1}{9} a^{4} + \frac{1}{3} a^{3} + \frac{1}{9} a^{2} - \frac{4}{9} a - \frac{1}{9}$, $\frac{1}{21033} a^{14} + \frac{802}{21033} a^{13} - \frac{928}{21033} a^{12} - \frac{938}{21033} a^{11} - \frac{866}{7011} a^{10} + \frac{974}{21033} a^{9} + \frac{262}{2337} a^{8} + \frac{8881}{21033} a^{7} - \frac{3109}{7011} a^{6} - \frac{6037}{21033} a^{5} + \frac{3029}{7011} a^{4} - \frac{7949}{21033} a^{3} - \frac{7939}{21033} a^{2} - \frac{6209}{21033} a + \frac{4675}{21033}$, $\frac{1}{63099} a^{15} + \frac{880}{63099} a^{13} + \frac{8}{3321} a^{12} - \frac{499}{63099} a^{11} - \frac{4708}{63099} a^{10} - \frac{569}{63099} a^{9} - \frac{542}{3321} a^{8} + \frac{5309}{63099} a^{7} + \frac{21524}{63099} a^{6} - \frac{28895}{63099} a^{5} - \frac{18305}{63099} a^{4} - \frac{19862}{63099} a^{3} + \frac{22925}{63099} a^{2} + \frac{9172}{21033} a + \frac{22568}{63099}$
Class group and class number
$C_{4}$, which has order $4$
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{8972}{21033} a^{15} - \frac{1174}{779} a^{14} + \frac{3992}{1107} a^{13} - \frac{40868}{21033} a^{12} - \frac{114776}{21033} a^{11} + \frac{578536}{21033} a^{10} - \frac{204124}{21033} a^{9} - \frac{558517}{21033} a^{8} + \frac{1322764}{21033} a^{7} + \frac{33112}{21033} a^{6} - \frac{238312}{21033} a^{5} + \frac{390692}{21033} a^{4} + \frac{5144}{21033} a^{3} - \frac{26726}{21033} a^{2} + \frac{24140}{7011} a - \frac{3575}{21033} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 10573.7624663 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$Q_8:C_2^2$ (as 16T23):
| A solvable group of order 32 |
| The 17 conjugacy class representatives for $Q_8 : C_2^2$ |
| Character table for $Q_8 : C_2^2$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 8 siblings: | data not computed |
| Degree 16 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $3$ | 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $5$ | 5.8.4.1 | $x^{8} + 10 x^{6} + 125 x^{4} + 2500$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 5.8.4.1 | $x^{8} + 10 x^{6} + 125 x^{4} + 2500$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |