Normalized defining polynomial
\( x^{16} + 3 x^{14} - 73 x^{13} + 47 x^{12} - 442 x^{11} + 1205 x^{10} - 3367 x^{9} + 15052 x^{8} + 10737 x^{7} + 106205 x^{6} - 11405 x^{5} + 145099 x^{4} + 329316 x^{3} + 1487871 x^{2} + 1532951 x + 1171175 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(17606641095812026885331265625=5^{6}\cdot 101^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $58.26$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 101$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{5} a^{6} - \frac{2}{5} a^{4} + \frac{2}{5} a^{3} + \frac{2}{5} a^{2} + \frac{2}{5} a$, $\frac{1}{5} a^{7} - \frac{2}{5} a^{5} + \frac{2}{5} a^{4} + \frac{2}{5} a^{3} + \frac{2}{5} a^{2}$, $\frac{1}{5} a^{8} + \frac{2}{5} a^{5} - \frac{2}{5} a^{4} + \frac{1}{5} a^{3} - \frac{1}{5} a^{2} - \frac{1}{5} a$, $\frac{1}{25} a^{9} - \frac{1}{25} a^{6} - \frac{12}{25} a^{5} + \frac{7}{25} a^{4} + \frac{3}{25} a^{3} - \frac{7}{25} a^{2} + \frac{9}{25} a$, $\frac{1}{25} a^{10} - \frac{1}{25} a^{7} - \frac{2}{25} a^{6} + \frac{7}{25} a^{5} + \frac{8}{25} a^{4} - \frac{12}{25} a^{3} + \frac{4}{25} a^{2} - \frac{1}{5} a$, $\frac{1}{25} a^{11} - \frac{1}{25} a^{8} - \frac{2}{25} a^{7} + \frac{2}{25} a^{6} + \frac{8}{25} a^{5} - \frac{2}{25} a^{4} - \frac{6}{25} a^{3} + \frac{2}{5} a^{2} - \frac{2}{5} a$, $\frac{1}{3250} a^{12} + \frac{43}{3250} a^{11} - \frac{11}{650} a^{10} + \frac{6}{325} a^{9} + \frac{11}{325} a^{8} + \frac{11}{125} a^{7} + \frac{59}{1625} a^{6} + \frac{41}{650} a^{5} - \frac{47}{650} a^{4} - \frac{79}{650} a^{3} - \frac{776}{1625} a^{2} - \frac{768}{1625} a - \frac{27}{130}$, $\frac{1}{3250} a^{13} + \frac{23}{1625} a^{11} - \frac{9}{650} a^{10} + \frac{53}{1625} a^{8} + \frac{4}{325} a^{7} + \frac{201}{3250} a^{6} + \frac{57}{325} a^{5} + \frac{74}{325} a^{4} + \frac{483}{3250} a^{3} + \frac{98}{325} a^{2} - \frac{147}{3250} a - \frac{9}{130}$, $\frac{1}{21823750} a^{14} - \frac{823}{10911875} a^{13} - \frac{1149}{21823750} a^{12} - \frac{187008}{10911875} a^{11} - \frac{85167}{4364750} a^{10} - \frac{185297}{10911875} a^{9} - \frac{179983}{10911875} a^{8} - \frac{71489}{21823750} a^{7} + \frac{1086717}{10911875} a^{6} - \frac{36633}{872950} a^{5} - \frac{1109591}{10911875} a^{4} + \frac{5088067}{21823750} a^{3} - \frac{593771}{1283750} a^{2} - \frac{330311}{1678750} a - \frac{4349}{11050}$, $\frac{1}{12970911491050700651311250} a^{15} + \frac{3153327978888101}{762994793591217685371250} a^{14} + \frac{887593387358584137414}{6485455745525350325655625} a^{13} - \frac{11692645245049420548}{498881211194257717358125} a^{12} + \frac{71460901124162436751486}{6485455745525350325655625} a^{11} - \frac{247652927506622531626999}{12970911491050700651311250} a^{10} + \frac{70489800390148592867506}{6485455745525350325655625} a^{9} - \frac{99956499642426825623747}{12970911491050700651311250} a^{8} + \frac{1251601470167519255283607}{12970911491050700651311250} a^{7} - \frac{586538094629128539889834}{6485455745525350325655625} a^{6} - \frac{43044592109139400207267}{281976336761971753289375} a^{5} + \frac{2318951547991304971737363}{6485455745525350325655625} a^{4} - \frac{1574322735052770939630193}{6485455745525350325655625} a^{3} + \frac{84317823361011686002931}{498881211194257717358125} a^{2} - \frac{377536483478065621254289}{12970911491050700651311250} a - \frac{1355462684537925944927}{6567550122050987671550}$
Class group and class number
$C_{5}\times C_{10}$, which has order $50$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 4045208.26311 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 32 |
| The 14 conjugacy class representatives for $D_4:C_4$ |
| Character table for $D_4:C_4$ |
Intermediate fields
| \(\Q(\sqrt{101}) \), 4.4.51005.1, 4.0.1030301.1, 4.0.5151505.1, 8.0.13007550125.1, 8.8.132690018825125.1, 8.0.26538003765025.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 16 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | $\Q_{5}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{5}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{5}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{5}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| $101$ | 101.8.6.1 | $x^{8} - 707 x^{4} + 826281$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |
| 101.8.6.1 | $x^{8} - 707 x^{4} + 826281$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |