Normalized defining polynomial
\( x^{16} - 8 x^{15} + 94 x^{14} - 518 x^{13} + 2915 x^{12} - 11120 x^{11} + 40043 x^{10} - 109674 x^{9} + 276033 x^{8} - 548960 x^{7} + 988724 x^{6} - 1403525 x^{5} + 1790895 x^{4} - 1714545 x^{3} + 1504070 x^{2} - 814425 x + 464375 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(17606641095812026885331265625=5^{6}\cdot 101^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $58.26$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 101$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{5} a^{10} - \frac{2}{5} a^{8} - \frac{2}{5} a^{7} - \frac{2}{5} a^{6} + \frac{2}{5} a^{5} - \frac{2}{5} a^{4}$, $\frac{1}{5} a^{11} - \frac{2}{5} a^{9} - \frac{2}{5} a^{8} - \frac{2}{5} a^{7} + \frac{2}{5} a^{6} - \frac{2}{5} a^{5}$, $\frac{1}{5} a^{12} - \frac{2}{5} a^{9} - \frac{1}{5} a^{8} - \frac{2}{5} a^{7} - \frac{1}{5} a^{6} - \frac{1}{5} a^{5} + \frac{1}{5} a^{4}$, $\frac{1}{5} a^{13} - \frac{1}{5} a^{9} - \frac{1}{5} a^{8} + \frac{1}{5} a^{4}$, $\frac{1}{231461921275} a^{14} - \frac{7}{231461921275} a^{13} - \frac{19926984743}{231461921275} a^{12} - \frac{19315244216}{231461921275} a^{11} - \frac{19747378516}{231461921275} a^{10} - \frac{25107199931}{231461921275} a^{9} + \frac{8424307639}{17804763175} a^{8} - \frac{83257025437}{231461921275} a^{7} + \frac{24465309326}{231461921275} a^{6} - \frac{8284059219}{231461921275} a^{5} - \frac{111604381}{9258476851} a^{4} - \frac{12865415744}{46292384255} a^{3} + \frac{2749000229}{9258476851} a^{2} + \frac{8009753191}{46292384255} a - \frac{3361890088}{9258476851}$, $\frac{1}{32400271201995775} a^{15} + \frac{69983}{32400271201995775} a^{14} - \frac{1348146741748783}{32400271201995775} a^{13} + \frac{888199952128539}{32400271201995775} a^{12} - \frac{3121975586814791}{32400271201995775} a^{11} + \frac{1061630835286679}{32400271201995775} a^{10} - \frac{9244658806112103}{32400271201995775} a^{9} - \frac{2482534263761527}{32400271201995775} a^{8} - \frac{9829852042019134}{32400271201995775} a^{7} + \frac{559960549119852}{2492328553999675} a^{6} + \frac{1020785710319462}{6480054240399155} a^{5} - \frac{1746211589672031}{6480054240399155} a^{4} - \frac{285208086750537}{1296010848079831} a^{3} - \frac{1042532183118269}{6480054240399155} a^{2} - \frac{83310766093378}{1296010848079831} a - \frac{186293569286777}{1296010848079831}$
Class group and class number
$C_{5}\times C_{10}$, which has order $50$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 3064881.8401 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$(C_2\times C_4).D_4$ (as 16T121):
| A solvable group of order 64 |
| The 28 conjugacy class representatives for $(C_2\times C_4).D_4$ |
| Character table for $(C_2\times C_4).D_4$ is not computed |
Intermediate fields
| \(\Q(\sqrt{101}) \), 4.4.51005.1, 4.0.1030301.1, 4.0.5151505.1, 8.4.132690018825125.1, 8.4.13007550125.1, 8.0.26538003765025.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | $\Q_{5}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{5}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{5}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{5}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{5}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{5}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{5}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{5}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| $101$ | 101.4.3.2 | $x^{4} - 404$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 101.4.3.2 | $x^{4} - 404$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 101.4.3.2 | $x^{4} - 404$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 101.4.3.2 | $x^{4} - 404$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |