Normalized defining polynomial
\( x^{16} - 4 x^{15} + 8 x^{14} - 34 x^{13} + 36 x^{12} + 32 x^{11} + 162 x^{10} - 112 x^{9} - 16 x^{8} - 310 x^{7} - 144 x^{6} + 44 x^{5} + 265 x^{4} + 120 x^{3} + 32 x^{2} + 16 x + 4 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1742237986263159341056=2^{16}\cdot 113^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $21.26$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 113$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{4}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{5}$, $\frac{1}{20} a^{12} - \frac{1}{20} a^{11} - \frac{3}{20} a^{9} + \frac{3}{20} a^{8} + \frac{1}{5} a^{7} - \frac{9}{20} a^{6} + \frac{3}{20} a^{5} + \frac{2}{5} a^{4} - \frac{7}{20} a^{3} - \frac{1}{4} a^{2} + \frac{2}{5} a - \frac{1}{10}$, $\frac{1}{40} a^{13} - \frac{1}{40} a^{12} - \frac{1}{4} a^{11} + \frac{7}{40} a^{10} - \frac{7}{40} a^{9} + \frac{1}{10} a^{8} - \frac{9}{40} a^{7} + \frac{3}{40} a^{6} + \frac{9}{20} a^{5} + \frac{3}{40} a^{4} - \frac{3}{8} a^{3} - \frac{3}{10} a^{2} - \frac{1}{20} a$, $\frac{1}{10280} a^{14} + \frac{29}{10280} a^{13} - \frac{111}{5140} a^{12} - \frac{1691}{10280} a^{11} - \frac{937}{10280} a^{10} + \frac{77}{514} a^{9} - \frac{99}{2056} a^{8} - \frac{39}{2056} a^{7} - \frac{367}{5140} a^{6} + \frac{4417}{10280} a^{5} + \frac{2239}{10280} a^{4} - \frac{837}{2570} a^{3} - \frac{324}{1285} a^{2} + \frac{191}{2570} a - \frac{139}{2570}$, $\frac{1}{454732849640} a^{15} + \frac{8213171}{227366424820} a^{14} + \frac{4927044137}{454732849640} a^{13} - \frac{3708459901}{454732849640} a^{12} - \frac{21298034899}{227366424820} a^{11} - \frac{95826891747}{454732849640} a^{10} + \frac{80059535117}{454732849640} a^{9} + \frac{11988056564}{56841606205} a^{8} + \frac{41985797753}{90946569928} a^{7} - \frac{153563486061}{454732849640} a^{6} + \frac{5573620403}{45473284964} a^{5} + \frac{100937762189}{454732849640} a^{4} - \frac{3455502263}{113683212410} a^{3} - \frac{55753108733}{227366424820} a^{2} + \frac{55375498789}{113683212410} a + \frac{22297325467}{56841606205}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{43137951}{353877704} a^{15} + \frac{120177436}{221173565} a^{14} - \frac{432974203}{353877704} a^{13} + \frac{8296512151}{1769388520} a^{12} - \frac{5739801719}{884694260} a^{11} - \frac{361244035}{353877704} a^{10} - \frac{33320051031}{1769388520} a^{9} + \frac{9787834663}{442347130} a^{8} - \frac{15010016727}{1769388520} a^{7} + \frac{68436128347}{1769388520} a^{6} - \frac{278793777}{176938852} a^{5} - \frac{12318439479}{1769388520} a^{4} - \frac{11565976191}{442347130} a^{3} + \frac{249102091}{221173565} a^{2} + \frac{3888537}{221173565} a - \frac{345765887}{442347130} \) (order $4$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 45023.51136 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 16 |
| The 7 conjugacy class representatives for $D_{8}$ |
| Character table for $D_{8}$ |
Intermediate fields
| \(\Q(\sqrt{-113}) \), \(\Q(\sqrt{113}) \), \(\Q(\sqrt{-1}) \), \(\Q(i, \sqrt{113})\), 4.2.51076.1 x2, 4.0.1808.1 x2, 8.0.41740124416.1, 8.2.10435031104.1 x4, 8.0.369381632.1 x4 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 8 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/5.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/7.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.4.4.1 | $x^{4} + 8 x^{2} + 4$ | $2$ | $2$ | $4$ | $C_2^2$ | $[2]^{2}$ |
| 2.4.4.1 | $x^{4} + 8 x^{2} + 4$ | $2$ | $2$ | $4$ | $C_2^2$ | $[2]^{2}$ | |
| 2.4.4.1 | $x^{4} + 8 x^{2} + 4$ | $2$ | $2$ | $4$ | $C_2^2$ | $[2]^{2}$ | |
| 2.4.4.1 | $x^{4} + 8 x^{2} + 4$ | $2$ | $2$ | $4$ | $C_2^2$ | $[2]^{2}$ | |
| $113$ | 113.2.1.1 | $x^{2} - 113$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 113.2.1.1 | $x^{2} - 113$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 113.2.1.1 | $x^{2} - 113$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 113.2.1.1 | $x^{2} - 113$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 113.2.1.1 | $x^{2} - 113$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 113.2.1.1 | $x^{2} - 113$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 113.2.1.1 | $x^{2} - 113$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 113.2.1.1 | $x^{2} - 113$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |