Normalized defining polynomial
\( x^{16} - 5 x^{15} + 15 x^{14} - 36 x^{13} + 41 x^{12} + 30 x^{11} - 107 x^{10} - 187 x^{9} + 832 x^{8} - 849 x^{7} + 1659 x^{6} - 5520 x^{5} + 12297 x^{4} - 17771 x^{3} + 12337 x^{2} - 19773 x + 28561 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(17415183620366462784744081=3^{8}\cdot 61^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $37.81$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 61$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{20} a^{12} - \frac{1}{5} a^{11} + \frac{1}{10} a^{10} + \frac{1}{4} a^{9} - \frac{3}{20} a^{8} + \frac{1}{5} a^{7} + \frac{1}{20} a^{6} - \frac{3}{10} a^{5} + \frac{3}{10} a^{4} - \frac{1}{10} a^{3} + \frac{3}{10} a^{2} - \frac{1}{5} a - \frac{1}{20}$, $\frac{1}{780} a^{13} - \frac{3}{130} a^{12} + \frac{79}{390} a^{11} + \frac{79}{260} a^{10} + \frac{109}{260} a^{9} - \frac{37}{390} a^{8} - \frac{21}{52} a^{7} - \frac{10}{39} a^{6} - \frac{1}{6} a^{5} - \frac{31}{130} a^{4} + \frac{49}{130} a^{3} - \frac{2}{195} a^{2} + \frac{31}{156} a - \frac{1}{30}$, $\frac{1}{3701100} a^{14} + \frac{57}{308425} a^{13} + \frac{13592}{925275} a^{12} + \frac{106523}{1233700} a^{11} + \frac{89991}{1233700} a^{10} - \frac{164837}{370110} a^{9} - \frac{294867}{1233700} a^{8} - \frac{429373}{1850550} a^{7} - \frac{18442}{71175} a^{6} - \frac{6817}{616850} a^{5} + \frac{257683}{616850} a^{4} + \frac{1264}{12675} a^{3} + \frac{36167}{148044} a^{2} + \frac{979}{2847} a + \frac{103}{3650}$, $\frac{1}{1115873928887312598900} a^{15} + \frac{6274260179983}{55793696444365629945} a^{14} + \frac{255736755257264777}{1115873928887312598900} a^{13} - \frac{13574811975665870389}{557936964443656299450} a^{12} - \frac{55470714222613323291}{371957976295770866300} a^{11} - \frac{470488250932268717027}{1115873928887312598900} a^{10} - \frac{32596934011179725671}{1115873928887312598900} a^{9} + \frac{105088665519167434723}{1115873928887312598900} a^{8} - \frac{8317001959028699011}{17167291213650963060} a^{7} + \frac{60999806099611547749}{1115873928887312598900} a^{6} + \frac{31918284027866914181}{185978988147885433150} a^{5} - \frac{100092505605507349976}{278968482221828149725} a^{4} + \frac{245418172914048894343}{1115873928887312598900} a^{3} - \frac{1076710476234536653}{8583645606825481530} a^{2} - \frac{1813008458286657367}{6602804312942678100} a - \frac{9174625116446523}{169302674690837900}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 615708.74713 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\wr C_4$ (as 16T172):
| A solvable group of order 64 |
| The 13 conjugacy class representatives for $C_2\wr C_4$ |
| Character table for $C_2\wr C_4$ |
Intermediate fields
| \(\Q(\sqrt{61}) \), 4.2.11163.1, 4.0.226981.1, 4.2.680943.1, 8.0.68412300381.1, 8.4.68412300381.1, 8.0.463683369249.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 8 siblings: | data not computed |
| Degree 16 siblings: | data not computed |
| Degree 32 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/5.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 3.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 3.8.6.2 | $x^{8} + 4 x^{7} + 14 x^{6} + 28 x^{5} + 43 x^{4} + 44 x^{3} + 110 x^{2} + 92 x + 22$ | $4$ | $2$ | $6$ | $D_4$ | $[\ ]_{4}^{2}$ | |
| $61$ | 61.4.3.2 | $x^{4} - 244$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 61.4.3.2 | $x^{4} - 244$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 61.4.3.2 | $x^{4} - 244$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 61.4.3.2 | $x^{4} - 244$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |