Normalized defining polynomial
\( x^{16} - 3 x^{15} - 9 x^{14} - 42 x^{13} + 250 x^{12} - 57 x^{11} - 939 x^{10} + 8310 x^{9} - 4947 x^{8} - 15927 x^{7} + 57297 x^{6} - 95394 x^{5} + 112678 x^{4} - 83598 x^{3} + 47112 x^{2} - 20586 x + 5329 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(17415183620366462784744081=3^{8}\cdot 61^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $37.81$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 61$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{3} a^{8} - \frac{1}{3} a^{4} + \frac{1}{3}$, $\frac{1}{3} a^{9} - \frac{1}{3} a^{5} + \frac{1}{3} a$, $\frac{1}{6} a^{10} - \frac{1}{6} a^{8} + \frac{1}{3} a^{6} - \frac{1}{2} a^{5} + \frac{1}{6} a^{4} + \frac{1}{6} a^{2} - \frac{1}{2} a - \frac{1}{6}$, $\frac{1}{6} a^{11} - \frac{1}{6} a^{9} + \frac{1}{3} a^{7} - \frac{1}{2} a^{6} + \frac{1}{6} a^{5} + \frac{1}{6} a^{3} - \frac{1}{2} a^{2} - \frac{1}{6} a$, $\frac{1}{156} a^{12} - \frac{1}{156} a^{11} - \frac{1}{13} a^{10} + \frac{19}{156} a^{9} + \frac{25}{156} a^{8} - \frac{11}{156} a^{7} + \frac{7}{26} a^{6} - \frac{10}{39} a^{5} - \frac{1}{39} a^{4} - \frac{11}{78} a^{3} + \frac{21}{52} a^{2} - \frac{31}{78} a + \frac{23}{156}$, $\frac{1}{56940} a^{13} - \frac{17}{28470} a^{12} - \frac{3931}{56940} a^{11} + \frac{3821}{56940} a^{10} + \frac{1}{130} a^{9} - \frac{1237}{28470} a^{8} + \frac{3617}{11388} a^{7} + \frac{7139}{28470} a^{6} + \frac{2763}{9490} a^{5} - \frac{7012}{14235} a^{4} - \frac{3319}{56940} a^{3} + \frac{17177}{56940} a^{2} - \frac{89}{56940} a + \frac{113}{260}$, $\frac{1}{341640} a^{14} + \frac{1}{170820} a^{13} + \frac{8}{8541} a^{12} - \frac{55}{949} a^{11} + \frac{853}{18980} a^{10} - \frac{2017}{113880} a^{9} + \frac{388}{4745} a^{8} - \frac{12903}{37960} a^{7} + \frac{9037}{18980} a^{6} + \frac{2485}{11388} a^{5} + \frac{15757}{37960} a^{4} + \frac{7937}{37960} a^{3} - \frac{73561}{170820} a^{2} + \frac{128123}{341640} a + \frac{149}{4680}$, $\frac{1}{235679292982995239093475240} a^{15} - \frac{22931111173196761063}{78559764327665079697825080} a^{14} - \frac{8801001313164257246}{5891982324574880977336881} a^{13} + \frac{97364837199204167643983}{58919823245748809773368810} a^{12} - \frac{192427502060239160033693}{6546647027305423308152090} a^{11} + \frac{1324386598694604369742319}{78559764327665079697825080} a^{10} - \frac{11899836163878670268246489}{78559764327665079697825080} a^{9} - \frac{12431002499332477308644017}{78559764327665079697825080} a^{8} - \frac{1794609281277846272076343}{26186588109221693232608360} a^{7} - \frac{305857658056354770996290}{1963994108191626992445627} a^{6} + \frac{24674127557884673280535073}{78559764327665079697825080} a^{5} + \frac{9740125848407270363040389}{39279882163832539848912540} a^{4} - \frac{108305059565148543526957703}{235679292982995239093475240} a^{3} - \frac{8232747443882453284651127}{78559764327665079697825080} a^{2} + \frac{49671298280856399596033363}{117839646491497619546737620} a - \frac{4754985718867836850561}{3228483465520482727307880}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{22423944268374794554}{151076469860894384034279} a^{15} - \frac{57126086280887794309}{151076469860894384034279} a^{14} - \frac{375403303600748637948}{251794116434823973390465} a^{13} - \frac{1748695035861013184563}{251794116434823973390465} a^{12} + \frac{8509928821033303525678}{251794116434823973390465} a^{11} + \frac{1518534446062004142757}{251794116434823973390465} a^{10} - \frac{33550940672315357417249}{251794116434823973390465} a^{9} + \frac{295751498090770584728607}{251794116434823973390465} a^{8} - \frac{10912624048120458438476}{50358823286964794678093} a^{7} - \frac{589054409280435075553519}{251794116434823973390465} a^{6} + \frac{1876600472060185123257461}{251794116434823973390465} a^{5} - \frac{2765718049918372867463276}{251794116434823973390465} a^{4} + \frac{9451541054930584745316506}{755382349304471920171395} a^{3} - \frac{5855240823531132218436038}{755382349304471920171395} a^{2} + \frac{1284118917967921314391627}{251794116434823973390465} a - \frac{4136415577319462201572}{3449234471709917443705} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2172533.23185 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2:C_4$ (as 16T10):
| A solvable group of order 16 |
| The 10 conjugacy class representatives for $C_2^2 : C_4$ |
| Character table for $C_2^2 : C_4$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 8 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/5.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $61$ | 61.4.3.2 | $x^{4} - 244$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 61.4.3.2 | $x^{4} - 244$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 61.4.3.2 | $x^{4} - 244$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 61.4.3.2 | $x^{4} - 244$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |