Normalized defining polynomial
\( x^{16} - 2 x^{15} + 2 x^{14} - 32 x^{13} + 41 x^{12} - 113 x^{11} - 320 x^{10} + 501 x^{9} + 2370 x^{8} + 5301 x^{7} + 11097 x^{6} + 14526 x^{5} + 13716 x^{4} + 13284 x^{3} + 9315 x^{2} + 3159 x + 729 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(17415183620366462784744081=3^{8}\cdot 61^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $37.81$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 61$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{3} a^{6} + \frac{1}{3} a^{4} + \frac{1}{3} a^{2}$, $\frac{1}{3} a^{7} + \frac{1}{3} a^{5} + \frac{1}{3} a^{3}$, $\frac{1}{9} a^{8} - \frac{1}{9} a^{7} + \frac{1}{9} a^{6} - \frac{4}{9} a^{5} + \frac{1}{9} a^{4} - \frac{4}{9} a^{3} - \frac{1}{3} a$, $\frac{1}{9} a^{9} - \frac{1}{3} a^{5} - \frac{4}{9} a^{3} - \frac{1}{3} a$, $\frac{1}{9} a^{10} - \frac{1}{9} a^{4}$, $\frac{1}{27} a^{11} + \frac{1}{27} a^{10} - \frac{1}{27} a^{9} + \frac{1}{27} a^{8} - \frac{1}{27} a^{7} + \frac{1}{27} a^{6} + \frac{7}{27} a^{5} - \frac{1}{3} a^{4} + \frac{1}{3} a^{2} - \frac{1}{3} a$, $\frac{1}{405} a^{12} + \frac{1}{405} a^{11} - \frac{2}{81} a^{10} + \frac{4}{405} a^{9} - \frac{4}{405} a^{8} - \frac{23}{405} a^{7} - \frac{1}{81} a^{6} - \frac{13}{27} a^{5} + \frac{8}{135} a^{4} - \frac{2}{45} a^{3} + \frac{7}{45} a^{2} + \frac{7}{15} a - \frac{2}{5}$, $\frac{1}{405} a^{13} + \frac{4}{405} a^{11} - \frac{16}{405} a^{10} + \frac{22}{405} a^{9} - \frac{4}{405} a^{8} + \frac{1}{135} a^{7} - \frac{8}{81} a^{6} + \frac{7}{15} a^{5} + \frac{1}{135} a^{4} - \frac{11}{45} a^{3} - \frac{1}{45} a^{2} + \frac{7}{15} a + \frac{2}{5}$, $\frac{1}{397305} a^{14} - \frac{56}{397305} a^{13} - \frac{217}{397305} a^{12} + \frac{1999}{397305} a^{11} - \frac{10432}{397305} a^{10} - \frac{1411}{79461} a^{9} - \frac{15464}{397305} a^{8} + \frac{2762}{26487} a^{7} - \frac{2183}{14715} a^{6} + \frac{4147}{14715} a^{5} + \frac{43}{1635} a^{4} - \frac{4856}{14715} a^{3} - \frac{496}{2943} a^{2} + \frac{664}{4905} a + \frac{155}{327}$, $\frac{1}{3857120801152875} a^{15} + \frac{2345760614}{3857120801152875} a^{14} + \frac{25797844289}{428568977905875} a^{13} - \frac{1223363400472}{1285706933717625} a^{12} - \frac{301692671461}{257141386743525} a^{11} - \frac{17810200289326}{1285706933717625} a^{10} - \frac{69475657740793}{3857120801152875} a^{9} + \frac{137323076254888}{3857120801152875} a^{8} + \frac{88340107619776}{1285706933717625} a^{7} - \frac{4311660772289}{428568977905875} a^{6} - \frac{38387285922847}{142856325968625} a^{5} + \frac{4163869430237}{47618775322875} a^{4} - \frac{61105709244691}{142856325968625} a^{3} - \frac{41100184322789}{142856325968625} a^{2} - \frac{4999551551843}{47618775322875} a + \frac{6539745510517}{15872925107625}$
Class group and class number
$C_{3}\times C_{6}$, which has order $18$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{34529650088}{35386429368375} a^{15} + \frac{88405322068}{35386429368375} a^{14} - \frac{124215397663}{35386429368375} a^{13} + \frac{1191386976583}{35386429368375} a^{12} - \frac{422481201821}{7077285873675} a^{11} + \frac{5297549546164}{35386429368375} a^{10} + \frac{7636268460259}{35386429368375} a^{9} - \frac{6815990014598}{11795476456125} a^{8} - \frac{7750305281671}{3931825485375} a^{7} - \frac{1816696502927}{436869498375} a^{6} - \frac{11515100244364}{1310608495125} a^{5} - \frac{12892658031593}{1310608495125} a^{4} - \frac{12039532228142}{1310608495125} a^{3} - \frac{3971055818381}{436869498375} a^{2} - \frac{833390383222}{145623166125} a - \frac{44362097007}{48541055375} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2820654.85259 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 16 |
| The 7 conjugacy class representatives for $QD_{16}$ |
| Character table for $QD_{16}$ |
Intermediate fields
| \(\Q(\sqrt{-183}) \), \(\Q(\sqrt{61}) \), \(\Q(\sqrt{-3}) \), \(\Q(\sqrt{-3}, \sqrt{61})\), 4.2.11163.1 x2, 4.0.549.1 x2, 8.0.1121513121.2, 8.2.1391050107747.2 x4 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 8 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/5.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| $61$ | 61.4.3.1 | $x^{4} - 61$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 61.4.3.1 | $x^{4} - 61$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 61.4.3.1 | $x^{4} - 61$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 61.4.3.1 | $x^{4} - 61$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |