Normalized defining polynomial
\( x^{16} + 10 x^{14} + 155 x^{12} - 120 x^{10} - 215 x^{8} - 24500 x^{6} + 142175 x^{4} - 264950 x^{2} + 429025 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1739116855398400000000000000=2^{24}\cdot 5^{14}\cdot 19^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $50.41$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 19$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{10} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{10} a^{9} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{10} a^{10} - \frac{1}{2}$, $\frac{1}{10} a^{11} - \frac{1}{2} a$, $\frac{1}{220} a^{12} - \frac{1}{20} a^{11} - \frac{1}{110} a^{10} + \frac{9}{220} a^{8} - \frac{1}{2} a^{7} + \frac{7}{44} a^{6} - \frac{15}{44} a^{4} - \frac{7}{22} a^{2} - \frac{1}{4} a - \frac{21}{44}$, $\frac{1}{220} a^{13} + \frac{9}{220} a^{11} + \frac{9}{220} a^{9} - \frac{1}{20} a^{8} - \frac{15}{44} a^{7} - \frac{1}{4} a^{6} - \frac{15}{44} a^{5} + \frac{1}{4} a^{4} - \frac{7}{22} a^{3} + \frac{1}{4} a^{2} - \frac{5}{22} a + \frac{1}{4}$, $\frac{1}{9134781358533820} a^{14} + \frac{3794013460197}{9134781358533820} a^{12} + \frac{41200056476499}{9134781358533820} a^{10} - \frac{1}{20} a^{9} + \frac{53873831374119}{1826956271706764} a^{8} - \frac{1}{4} a^{7} - \frac{6379409615717}{1826956271706764} a^{6} + \frac{1}{4} a^{5} - \frac{166041010754722}{456739067926691} a^{4} + \frac{1}{4} a^{3} + \frac{102017300102084}{456739067926691} a^{2} + \frac{1}{4} a - \frac{155771780491089}{456739067926691}$, $\frac{1}{5983281789839652100} a^{15} + \frac{2226323715498461}{1196656357967930420} a^{13} + \frac{32278931246988413}{1196656357967930420} a^{11} - \frac{1}{20} a^{10} - \frac{20291775558087571}{1196656357967930420} a^{9} - \frac{1}{20} a^{8} - \frac{451015448120499139}{1196656357967930420} a^{7} + \frac{1}{4} a^{6} - \frac{8628197841254951}{119665635796793042} a^{5} + \frac{1}{4} a^{4} + \frac{3345831792254061}{10878694163344822} a^{3} + \frac{1}{4} a^{2} + \frac{27655537506948833}{59832817898396521} a$
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{4}$, which has order $32$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 246558.133646 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^3.C_4$ (as 16T36):
| A solvable group of order 32 |
| The 11 conjugacy class representatives for $C_2^3.C_4$ |
| Character table for $C_2^3.C_4$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\sqrt{95}) \), \(\Q(\sqrt{19}) \), 4.4.45125.1, \(\Q(\zeta_{20})^+\), \(\Q(\sqrt{5}, \sqrt{19})\), 8.0.2606420000000.1 x2, 8.0.115520000000.1 x2, 8.8.521284000000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 8 siblings: | data not computed |
| Degree 16 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $5$ | 5.8.7.2 | $x^{8} - 20$ | $8$ | $1$ | $7$ | $C_8:C_2$ | $[\ ]_{8}^{2}$ |
| 5.8.7.2 | $x^{8} - 20$ | $8$ | $1$ | $7$ | $C_8:C_2$ | $[\ ]_{8}^{2}$ | |
| $19$ | 19.4.2.1 | $x^{4} + 57 x^{2} + 1444$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 19.4.2.1 | $x^{4} + 57 x^{2} + 1444$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 19.4.2.1 | $x^{4} + 57 x^{2} + 1444$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 19.4.2.1 | $x^{4} + 57 x^{2} + 1444$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |