Normalized defining polynomial
\( x^{16} - 13 x^{14} + 84 x^{12} - 329 x^{10} + 819 x^{8} - 1288 x^{6} + 1246 x^{4} - 720 x^{2} + 225 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1738211555063394140625=3^{8}\cdot 5^{8}\cdot 7^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $21.26$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 5, 7$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{10} a^{8} - \frac{1}{2} a^{7} - \frac{2}{5} a^{6} - \frac{1}{2} a^{5} - \frac{1}{10} a^{4} + \frac{2}{5} a^{2} - \frac{1}{2}$, $\frac{1}{10} a^{9} + \frac{1}{10} a^{7} - \frac{1}{2} a^{6} + \frac{2}{5} a^{5} - \frac{1}{2} a^{4} + \frac{2}{5} a^{3} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{10} a^{10} - \frac{1}{5} a^{6} - \frac{1}{2} a^{4} + \frac{1}{10} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{10} a^{11} - \frac{1}{5} a^{7} - \frac{1}{2} a^{5} + \frac{1}{10} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{30} a^{12} + \frac{1}{30} a^{10} - \frac{1}{30} a^{8} - \frac{1}{2} a^{7} - \frac{1}{30} a^{6} - \frac{1}{2} a^{5} - \frac{1}{6} a^{4} - \frac{1}{2} a^{3} + \frac{1}{3} a^{2} - \frac{1}{2} a$, $\frac{1}{30} a^{13} + \frac{1}{30} a^{11} - \frac{1}{30} a^{9} + \frac{7}{15} a^{7} - \frac{1}{2} a^{6} + \frac{1}{3} a^{5} + \frac{1}{3} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{390} a^{14} + \frac{2}{195} a^{12} - \frac{2}{195} a^{10} - \frac{7}{390} a^{8} - \frac{119}{390} a^{6} - \frac{1}{2} a^{5} + \frac{43}{390} a^{4} - \frac{28}{65} a^{2} + \frac{3}{13}$, $\frac{1}{1950} a^{15} + \frac{17}{1950} a^{13} + \frac{3}{650} a^{11} - \frac{59}{1950} a^{9} + \frac{69}{325} a^{7} - \frac{1}{2} a^{6} - \frac{373}{1950} a^{5} - \frac{1}{2} a^{4} - \frac{487}{975} a^{3} - \frac{1}{2} a^{2} - \frac{59}{130} a$
Class group and class number
$C_{2}$, which has order $2$
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 20727.8076222 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 16 |
| The 7 conjugacy class representatives for $D_{8}$ |
| Character table for $D_{8}$ |
Intermediate fields
| \(\Q(\sqrt{-15}) \), \(\Q(\sqrt{21}) \), \(\Q(\sqrt{-35}) \), \(\Q(\sqrt{-15}, \sqrt{21})\), 4.2.15435.1 x2, 4.0.25725.1 x2, 8.0.5955980625.1, 8.2.8338372875.1 x4, 8.0.13897288125.1 x4 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 8 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | R | R | R | ${\href{/LocalNumberField/11.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $5$ | 5.2.1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 5.2.1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.2.1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.2.1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.2.1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.2.1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.2.1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.2.1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 7 | Data not computed | ||||||