Normalized defining polynomial
\( x^{16} - 2 x^{15} - 7 x^{14} - 4 x^{13} + 52 x^{12} + 132 x^{11} - 384 x^{10} - 340 x^{9} + 515 x^{8} + 4238 x^{7} + 14227 x^{6} - 10064 x^{5} - 14400 x^{4} + 56344 x^{3} + 29980 x^{2} - 25440 x + 15584 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1732569100827059303563569135616=2^{28}\cdot 17^{4}\cdot 16673^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $77.61$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 17, 16673$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{4}$, $\frac{1}{4} a^{9} - \frac{1}{4} a^{7} - \frac{1}{4} a^{5} - \frac{1}{4} a^{3} - \frac{1}{2} a$, $\frac{1}{4} a^{10} - \frac{1}{4} a^{8} - \frac{1}{4} a^{6} - \frac{1}{4} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{68} a^{11} + \frac{3}{68} a^{10} + \frac{3}{68} a^{9} + \frac{3}{68} a^{8} - \frac{9}{68} a^{7} + \frac{9}{68} a^{6} - \frac{33}{68} a^{5} - \frac{33}{68} a^{4} - \frac{1}{2} a^{3} - \frac{15}{34} a^{2} + \frac{6}{17} a - \frac{6}{17}$, $\frac{1}{136} a^{12} - \frac{3}{68} a^{10} - \frac{3}{68} a^{9} + \frac{2}{17} a^{8} + \frac{1}{68} a^{7} + \frac{1}{17} a^{6} - \frac{1}{68} a^{5} + \frac{31}{136} a^{4} - \frac{15}{68} a^{3} + \frac{23}{68} a^{2} - \frac{7}{34} a - \frac{8}{17}$, $\frac{1}{272} a^{13} - \frac{1}{272} a^{12} - \frac{1}{136} a^{11} - \frac{11}{136} a^{10} - \frac{9}{68} a^{8} - \frac{4}{17} a^{7} + \frac{15}{68} a^{6} + \frac{71}{272} a^{5} - \frac{91}{272} a^{4} + \frac{21}{136} a^{3} + \frac{5}{136} a^{2} + \frac{8}{17} a - \frac{2}{17}$, $\frac{1}{4624} a^{14} + \frac{1}{2312} a^{13} - \frac{3}{4624} a^{12} - \frac{3}{578} a^{11} + \frac{273}{2312} a^{10} + \frac{25}{1156} a^{9} - \frac{253}{1156} a^{8} - \frac{41}{1156} a^{7} - \frac{717}{4624} a^{6} + \frac{1013}{2312} a^{5} + \frac{2079}{4624} a^{4} - \frac{151}{1156} a^{3} + \frac{1017}{2312} a^{2} - \frac{19}{578} a + \frac{99}{289}$, $\frac{1}{1879444981189011204139936} a^{15} - \frac{166648770307788555}{3251634915551922498512} a^{14} + \frac{2583190607796812099969}{1879444981189011204139936} a^{13} - \frac{2451420036472395330997}{939722490594505602069968} a^{12} + \frac{2535789302423829320769}{939722490594505602069968} a^{11} + \frac{8769102282102899622315}{234930622648626400517492} a^{10} - \frac{46716582287447053335383}{469861245297252801034984} a^{9} + \frac{42401035466565727732277}{469861245297252801034984} a^{8} + \frac{284702975102755444002827}{1879444981189011204139936} a^{7} - \frac{210277012984408959302635}{939722490594505602069968} a^{6} + \frac{681632756335850560985331}{1879444981189011204139936} a^{5} + \frac{200873441750189796486183}{939722490594505602069968} a^{4} - \frac{221555678624737340751803}{939722490594505602069968} a^{3} - \frac{208356765757492141071033}{469861245297252801034984} a^{2} + \frac{11156889313516568435121}{117465311324313200258746} a + \frac{16687466648497953057659}{58732655662156600129373}$
Class group and class number
$C_{2}\times C_{198}$, which has order $396$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 37998382.295 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 512 |
| The 44 conjugacy class representatives for t16n969 |
| Character table for t16n969 is not computed |
Intermediate fields
| \(\Q(\sqrt{2}) \), 4.4.1067072.2, 8.0.77427700416512.1, 8.0.77427700416512.2, 8.8.329067726770176.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.2.3.1 | $x^{2} + 14$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ |
| 2.2.3.1 | $x^{2} + 14$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
| 2.2.3.1 | $x^{2} + 14$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
| 2.2.3.1 | $x^{2} + 14$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
| 2.4.8.2 | $x^{4} + 6 x^{2} + 1$ | $4$ | $1$ | $8$ | $C_2^2$ | $[2, 3]$ | |
| 2.4.8.2 | $x^{4} + 6 x^{2} + 1$ | $4$ | $1$ | $8$ | $C_2^2$ | $[2, 3]$ | |
| $17$ | 17.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 17.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 17.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 17.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 17.4.2.1 | $x^{4} + 85 x^{2} + 2601$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 17.4.2.1 | $x^{4} + 85 x^{2} + 2601$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 16673 | Data not computed | ||||||