Normalized defining polynomial
\( x^{16} - 8 x^{15} + 638 x^{14} - 3428 x^{13} + 121143 x^{12} - 514872 x^{11} + 9191478 x^{10} - 30902744 x^{9} + 267942545 x^{8} - 621534848 x^{7} + 2733539310 x^{6} - 3490609372 x^{5} + 9450227107 x^{4} - 273863064 x^{3} + 24010475054 x^{2} + 6030300648 x + 61963913988 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1729972723111358956551996577891668583251968=2^{34}\cdot 17^{8}\cdot 4129^{3}\cdot 5897^{3}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $436.39$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 17, 4129, 5897$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{4}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{5}$, $\frac{1}{12004} a^{14} + \frac{511}{6002} a^{13} + \frac{1811}{12004} a^{12} - \frac{1173}{6002} a^{11} - \frac{1447}{6002} a^{10} + \frac{1497}{3001} a^{9} - \frac{1155}{3001} a^{8} + \frac{113}{3001} a^{7} + \frac{5857}{12004} a^{6} + \frac{2605}{6002} a^{5} - \frac{2245}{12004} a^{4} + \frac{1201}{6002} a^{3} - \frac{1485}{6002} a^{2} - \frac{513}{3001} a + \frac{1285}{3001}$, $\frac{1}{1656552014410601178731093253626559283727704129013637734675910038303555999158172724} a^{15} - \frac{63740528533168257703478822996618307235736220004544015039884150953891401897411}{1656552014410601178731093253626559283727704129013637734675910038303555999158172724} a^{14} - \frac{306309000441367225171349577728041811786653996811190091040862366723065360750281339}{1656552014410601178731093253626559283727704129013637734675910038303555999158172724} a^{13} + \frac{270777308393923336581718747579609849199270983588600897465174482356435196056173255}{1656552014410601178731093253626559283727704129013637734675910038303555999158172724} a^{12} + \frac{28213039835672359017681773912473969608338077055491809481448965411617651761165192}{138046001200883431560924437802213273643975344084469811222992503191962999929847727} a^{11} + \frac{17981047532804869856848097265261506593795574499287647672248929629542840430912869}{276092002401766863121848875604426547287950688168939622445985006383925999859695454} a^{10} - \frac{37289089823183491888374026511683051951985484022860497290451257210822280561317711}{138046001200883431560924437802213273643975344084469811222992503191962999929847727} a^{9} - \frac{138215664886170098770189777189296931486757830526162643838543478223721262455517774}{414138003602650294682773313406639820931926032253409433668977509575888999789543181} a^{8} + \frac{197176376477743639155333349250010717250137435317174069106813733827798765664290425}{1656552014410601178731093253626559283727704129013637734675910038303555999158172724} a^{7} + \frac{174462739134637055167953473382489294819637251348479124445449794752172133954713677}{1656552014410601178731093253626559283727704129013637734675910038303555999158172724} a^{6} + \frac{254506709305973481966590942751845368196283260268936208878554687887371407756740903}{552184004803533726243697751208853094575901376337879244891970012767851999719390908} a^{5} + \frac{6038847958962604267851235274534638917355724709524832613351755320339561293872155}{1656552014410601178731093253626559283727704129013637734675910038303555999158172724} a^{4} - \frac{60407164364125571502251911532283015993285018393314651636551002190286594412593030}{414138003602650294682773313406639820931926032253409433668977509575888999789543181} a^{3} - \frac{36503162686406528826133965021767372530151285730044619246120772197497513271389799}{276092002401766863121848875604426547287950688168939622445985006383925999859695454} a^{2} + \frac{12267486879472677062160909297817943363840863394657363133863021215308027733581884}{414138003602650294682773313406639820931926032253409433668977509575888999789543181} a - \frac{47322801715722207776401653312870409933914923877676435576775814265907731495555117}{138046001200883431560924437802213273643975344084469811222992503191962999929847727}$
Class group and class number
$C_{2}\times C_{2}\times C_{4}\times C_{736}$, which has order $11776$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 60333969654.9 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 2048 |
| The 74 conjugacy class representatives for t16n1472 are not computed |
| Character table for t16n1472 is not computed |
Intermediate fields
| \(\Q(\sqrt{2}) \), \(\Q(\sqrt{34}) \), \(\Q(\sqrt{17}) \), \(\Q(\sqrt{2}, \sqrt{17})\), 8.0.33318975217221632.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.4.6.1 | $x^{4} - 6 x^{2} + 4$ | $2$ | $2$ | $6$ | $C_2^2$ | $[3]^{2}$ |
| 2.4.6.1 | $x^{4} - 6 x^{2} + 4$ | $2$ | $2$ | $6$ | $C_2^2$ | $[3]^{2}$ | |
| 2.8.22.84 | $x^{8} + 4 x^{7} + 10 x^{4} + 4 x^{2} + 14$ | $8$ | $1$ | $22$ | $D_4$ | $[2, 3, 7/2]$ | |
| $17$ | 17.4.2.1 | $x^{4} + 85 x^{2} + 2601$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 17.4.2.1 | $x^{4} + 85 x^{2} + 2601$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 17.4.2.1 | $x^{4} + 85 x^{2} + 2601$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 17.4.2.1 | $x^{4} + 85 x^{2} + 2601$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 4129 | Data not computed | ||||||
| 5897 | Data not computed | ||||||