Properties

Label 16.0.17199267840...0000.2
Degree $16$
Signature $[0, 8]$
Discriminant $2^{28}\cdot 3^{8}\cdot 5^{10}$
Root discriminant $15.93$
Ramified primes $2, 3, 5$
Class number $2$
Class group $[2]$
Galois group $C_2^2.D_4$ (as 16T33)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, -6, 16, -24, 20, -6, 12, -30, 59, -30, 12, -6, 20, -24, 16, -6, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^16 - 6*x^15 + 16*x^14 - 24*x^13 + 20*x^12 - 6*x^11 + 12*x^10 - 30*x^9 + 59*x^8 - 30*x^7 + 12*x^6 - 6*x^5 + 20*x^4 - 24*x^3 + 16*x^2 - 6*x + 1)
 
gp: K = bnfinit(x^16 - 6*x^15 + 16*x^14 - 24*x^13 + 20*x^12 - 6*x^11 + 12*x^10 - 30*x^9 + 59*x^8 - 30*x^7 + 12*x^6 - 6*x^5 + 20*x^4 - 24*x^3 + 16*x^2 - 6*x + 1, 1)
 

Normalized defining polynomial

\( x^{16} - 6 x^{15} + 16 x^{14} - 24 x^{13} + 20 x^{12} - 6 x^{11} + 12 x^{10} - 30 x^{9} + 59 x^{8} - 30 x^{7} + 12 x^{6} - 6 x^{5} + 20 x^{4} - 24 x^{3} + 16 x^{2} - 6 x + 1 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $16$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 8]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(17199267840000000000=2^{28}\cdot 3^{8}\cdot 5^{10}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $15.93$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 3, 5$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{3} a^{12} - \frac{1}{3} a^{10} + \frac{1}{3} a^{6} - \frac{1}{3} a^{2} + \frac{1}{3}$, $\frac{1}{3} a^{13} - \frac{1}{3} a^{11} + \frac{1}{3} a^{7} - \frac{1}{3} a^{3} + \frac{1}{3} a$, $\frac{1}{465} a^{14} - \frac{59}{465} a^{13} + \frac{14}{155} a^{12} + \frac{134}{465} a^{11} + \frac{161}{465} a^{10} + \frac{54}{155} a^{9} + \frac{20}{93} a^{8} + \frac{88}{465} a^{7} + \frac{20}{93} a^{6} + \frac{54}{155} a^{5} + \frac{161}{465} a^{4} + \frac{134}{465} a^{3} + \frac{14}{155} a^{2} - \frac{59}{465} a + \frac{1}{465}$, $\frac{1}{7905} a^{15} - \frac{7}{7905} a^{14} + \frac{74}{7905} a^{13} - \frac{472}{7905} a^{12} + \frac{878}{2635} a^{11} + \frac{1559}{7905} a^{10} - \frac{73}{465} a^{9} + \frac{1568}{7905} a^{8} + \frac{1197}{2635} a^{7} + \frac{206}{465} a^{6} + \frac{322}{1581} a^{5} - \frac{1259}{7905} a^{4} + \frac{317}{1581} a^{3} + \frac{518}{1581} a^{2} - \frac{144}{2635} a + \frac{52}{7905}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{2}$, which has order $2$

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $7$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -\frac{163}{93} a^{15} + \frac{298}{31} a^{14} - 23 a^{13} + \frac{2764}{93} a^{12} - \frac{1718}{93} a^{11} - \frac{97}{93} a^{10} - \frac{1783}{93} a^{9} + \frac{1246}{31} a^{8} - \frac{7312}{93} a^{7} + \frac{697}{93} a^{6} - \frac{1031}{93} a^{5} + \frac{94}{31} a^{4} - \frac{927}{31} a^{3} + \frac{2231}{93} a^{2} - \frac{1036}{93} a + \frac{205}{93} \) (order $4$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 1764.69021733 \)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_2^2.D_4$ (as 16T33):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 32
The 11 conjugacy class representatives for $C_2^2.D_4$
Character table for $C_2^2.D_4$

Intermediate fields

\(\Q(\sqrt{-1}) \), \(\Q(\sqrt{5}) \), \(\Q(\sqrt{-5}) \), 4.0.2880.1 x2, 4.2.3600.1 x2, \(\Q(i, \sqrt{5})\), 8.0.115200000.2 x2, 8.0.207360000.5, 8.0.829440000.3 x2

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Galois closure: data not computed
Degree 8 siblings: data not computed
Degree 16 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R R R ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/41.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{8}$ ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
2Data not computed
$3$3.4.2.2$x^{4} - 3 x^{2} + 18$$2$$2$$2$$C_4$$[\ ]_{2}^{2}$
3.4.2.2$x^{4} - 3 x^{2} + 18$$2$$2$$2$$C_4$$[\ ]_{2}^{2}$
3.4.2.2$x^{4} - 3 x^{2} + 18$$2$$2$$2$$C_4$$[\ ]_{2}^{2}$
3.4.2.2$x^{4} - 3 x^{2} + 18$$2$$2$$2$$C_4$$[\ ]_{2}^{2}$
$5$5.4.2.1$x^{4} + 15 x^{2} + 100$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
5.4.3.2$x^{4} - 20$$4$$1$$3$$C_4$$[\ ]_{4}$
5.4.3.2$x^{4} - 20$$4$$1$$3$$C_4$$[\ ]_{4}$
5.4.2.1$x^{4} + 15 x^{2} + 100$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$