Normalized defining polynomial
\( x^{16} - 2 x^{15} - 15 x^{14} - 316 x^{13} + 3898 x^{12} + 364 x^{11} - 8277 x^{10} - 735808 x^{9} + 2943728 x^{8} + 1110888 x^{7} + 19937397 x^{6} - 261805816 x^{5} + 661014999 x^{4} - 623815062 x^{3} + 1769942058 x^{2} - 5322863812 x + 4615706356 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1719731248304838654458056435302400000000=2^{26}\cdot 5^{8}\cdot 7^{8}\cdot 241^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $283.28$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 7, 241$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{6} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{7} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{8} - \frac{1}{2} a^{4}$, $\frac{1}{6} a^{13} + \frac{1}{6} a^{12} - \frac{1}{6} a^{11} + \frac{1}{6} a^{9} - \frac{1}{6} a^{8} - \frac{1}{6} a^{7} + \frac{1}{3} a^{6} + \frac{1}{6} a^{5} - \frac{1}{6} a^{4} - \frac{1}{2} a^{3} + \frac{1}{3} a^{2} - \frac{1}{3} a - \frac{1}{3}$, $\frac{1}{6} a^{14} + \frac{1}{6} a^{12} + \frac{1}{6} a^{11} + \frac{1}{6} a^{10} - \frac{1}{3} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{6} a^{6} - \frac{1}{3} a^{5} + \frac{1}{6} a^{4} - \frac{1}{6} a^{3} + \frac{1}{3} a^{2} + \frac{1}{3}$, $\frac{1}{885633562013242337019728317874681660413943621942127647311636359522} a^{15} - \frac{49704547190891802406593136901864420451497053055207039887204259093}{885633562013242337019728317874681660413943621942127647311636359522} a^{14} - \frac{47505915283366960770205696018102664763708451562673663922434385631}{885633562013242337019728317874681660413943621942127647311636359522} a^{13} - \frac{17823534011724606541460545066113822198582536180553773572617920689}{885633562013242337019728317874681660413943621942127647311636359522} a^{12} + \frac{11443646512645763745165656563799635894736363579475734010360910192}{442816781006621168509864158937340830206971810971063823655818179761} a^{11} - \frac{155620640714545441436132029490263538464246355930442052295225067037}{885633562013242337019728317874681660413943621942127647311636359522} a^{10} - \frac{42441164706680418673916197313836999255854540075582980626497022697}{885633562013242337019728317874681660413943621942127647311636359522} a^{9} - \frac{64132972186139247499380882306016230887735537379804673482350595359}{295211187337747445673242772624893886804647873980709215770545453174} a^{8} - \frac{206078654956303145959384154915285686364863680270779301265268501252}{442816781006621168509864158937340830206971810971063823655818179761} a^{7} + \frac{27670506904381798331276124055079127859012370573107344914533549401}{295211187337747445673242772624893886804647873980709215770545453174} a^{6} - \frac{213371683592555834257446344228009463352999503042685521123371346685}{885633562013242337019728317874681660413943621942127647311636359522} a^{5} + \frac{88667159249262814406052577179421947867006752898994735758892631599}{295211187337747445673242772624893886804647873980709215770545453174} a^{4} + \frac{106765038552495517771242884163329439601703994627603494491914352195}{885633562013242337019728317874681660413943621942127647311636359522} a^{3} - \frac{3876395924191168867416208277072047429284254774720857310072328106}{40256071000601924409987650812485530018815619179187620332347107251} a^{2} - \frac{186797654876651215638656941661212495194778192926814674774885195812}{442816781006621168509864158937340830206971810971063823655818179761} a - \frac{213182391696786156372124280722761766291572704358134678624995019903}{442816781006621168509864158937340830206971810971063823655818179761}$
Class group and class number
$C_{4}\times C_{60}$, which has order $240$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 91987461555.5 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 1024 |
| The 61 conjugacy class representatives for t16n1228 are not computed |
| Character table for t16n1228 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\sqrt{8435}) \), \(\Q(\sqrt{1687}) \), 4.0.6025.1, 4.0.4723600.3, \(\Q(\sqrt{5}, \sqrt{1687})\), 8.0.1295926327833760000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{4}$ | R | R | ${\href{/LocalNumberField/11.4.0.1}{4} }{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.4.4.1 | $x^{4} + 8 x^{2} + 4$ | $2$ | $2$ | $4$ | $C_2^2$ | $[2]^{2}$ |
| 2.4.4.1 | $x^{4} + 8 x^{2} + 4$ | $2$ | $2$ | $4$ | $C_2^2$ | $[2]^{2}$ | |
| 2.8.18.1 | $x^{8} + 14 x^{6} + 10 x^{4} + 12 x^{2} + 16 x + 4$ | $4$ | $2$ | $18$ | $D_4\times C_2$ | $[2, 3, 7/2]^{2}$ | |
| $5$ | 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.8.4.1 | $x^{8} + 10 x^{6} + 125 x^{4} + 2500$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 7 | Data not computed | ||||||
| 241 | Data not computed | ||||||