Normalized defining polynomial
\( x^{16} - 4 x^{15} + 11 x^{14} - 21 x^{13} + 36 x^{12} + 25 x^{11} - 79 x^{10} + 700 x^{9} - 1641 x^{8} + 2467 x^{7} - 665 x^{6} - 5728 x^{5} + 18236 x^{4} - 15783 x^{3} + 19427 x^{2} - 3780 x + 4025 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1715363997287681422874732281=7^{8}\cdot 29^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $50.37$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $7, 29$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $\frac{1}{5} a^{11} - \frac{1}{5} a^{10} - \frac{1}{5} a^{9} - \frac{2}{5} a^{7} + \frac{1}{5} a^{6} - \frac{1}{5} a^{5} - \frac{2}{5} a^{4} + \frac{1}{5} a^{3} + \frac{1}{5} a^{2} + \frac{1}{5} a$, $\frac{1}{10} a^{12} + \frac{3}{10} a^{10} + \frac{2}{5} a^{9} + \frac{3}{10} a^{8} + \frac{2}{5} a^{7} - \frac{3}{10} a^{5} + \frac{2}{5} a^{4} - \frac{3}{10} a^{3} + \frac{1}{5} a^{2} + \frac{1}{10} a - \frac{1}{2}$, $\frac{1}{530} a^{13} + \frac{2}{265} a^{12} - \frac{23}{530} a^{11} + \frac{121}{265} a^{10} - \frac{37}{106} a^{9} + \frac{123}{265} a^{8} + \frac{39}{265} a^{7} + \frac{151}{530} a^{6} - \frac{111}{265} a^{5} - \frac{49}{106} a^{4} + \frac{122}{265} a^{3} + \frac{143}{530} a^{2} - \frac{47}{530} a + \frac{7}{53}$, $\frac{1}{126670} a^{14} - \frac{38}{63335} a^{13} - \frac{2954}{63335} a^{12} - \frac{1079}{63335} a^{11} + \frac{6022}{12667} a^{10} + \frac{28458}{63335} a^{9} + \frac{23593}{126670} a^{8} + \frac{60691}{126670} a^{7} - \frac{17016}{63335} a^{6} - \frac{1349}{12667} a^{5} + \frac{13897}{63335} a^{4} - \frac{27841}{63335} a^{3} + \frac{36213}{126670} a^{2} - \frac{2997}{25334} a - \frac{9865}{25334}$, $\frac{1}{18663296904267557081410} a^{15} - \frac{8471801233345753}{9331648452133778540705} a^{14} - \frac{5086389739203279713}{9331648452133778540705} a^{13} + \frac{32683368096426739674}{1866329690426755708141} a^{12} + \frac{208855046668592994736}{9331648452133778540705} a^{11} + \frac{2868870017914675795776}{9331648452133778540705} a^{10} - \frac{17431591743489473413}{3732659380853511416282} a^{9} + \frac{52611086120510725101}{224858998846597073270} a^{8} - \frac{2740046698263802783541}{9331648452133778540705} a^{7} - \frac{8075263079796469940}{22485899884659707327} a^{6} - \frac{4448204975693013373539}{9331648452133778540705} a^{5} - \frac{3015534446426321952699}{9331648452133778540705} a^{4} - \frac{1820331435546026253751}{18663296904267557081410} a^{3} + \frac{8399924809873051762959}{18663296904267557081410} a^{2} + \frac{6812552564501121719499}{18663296904267557081410} a - \frac{923533047630219632065}{1866329690426755708141}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 9780917.77015 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^3.C_4$ (as 16T36):
| A solvable group of order 32 |
| The 11 conjugacy class representatives for $C_2^3.C_4$ |
| Character table for $C_2^3.C_4$ |
Intermediate fields
| \(\Q(\sqrt{-7}) \), \(\Q(\sqrt{29}) \), \(\Q(\sqrt{-203}) \), 4.4.1195061.1, 4.0.24389.1, \(\Q(\sqrt{-7}, \sqrt{29})\), 8.4.41416953017909.1 x2, 8.0.845243939141.1 x2, 8.0.1428170793721.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 8 siblings: | data not computed |
| Degree 16 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/5.2.0.1}{2} }^{8}$ | R | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{8}$ | R | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $7$ | 7.2.1.2 | $x^{2} + 14$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 7.2.1.2 | $x^{2} + 14$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 7.2.1.2 | $x^{2} + 14$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 7.2.1.2 | $x^{2} + 14$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 7.4.2.1 | $x^{4} + 35 x^{2} + 441$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 7.4.2.1 | $x^{4} + 35 x^{2} + 441$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $29$ | 29.8.7.2 | $x^{8} - 116$ | $8$ | $1$ | $7$ | $C_8:C_2$ | $[\ ]_{8}^{2}$ |
| 29.8.7.2 | $x^{8} - 116$ | $8$ | $1$ | $7$ | $C_8:C_2$ | $[\ ]_{8}^{2}$ |