Normalized defining polynomial
\( x^{16} - x^{15} + 2 x^{14} + 4 x^{13} - 25 x^{12} + 4 x^{11} - 6 x^{10} - 84 x^{9} + 64 x^{8} + 150 x^{7} + 276 x^{6} + 556 x^{5} + 605 x^{4} + 337 x^{3} + 98 x^{2} + 14 x + 1 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(170465969474436796416=2^{12}\cdot 3^{12}\cdot 23^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $18.39$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 23$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{9} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{6} a^{12} + \frac{1}{6} a^{11} + \frac{1}{6} a^{10} - \frac{1}{6} a^{9} + \frac{1}{6} a^{8} - \frac{1}{3} a^{7} + \frac{1}{3} a^{6} + \frac{1}{6} a^{5} + \frac{1}{6} a^{4} - \frac{1}{6} a^{3} + \frac{1}{6} a^{2} - \frac{1}{3} a + \frac{1}{6}$, $\frac{1}{438} a^{13} + \frac{11}{146} a^{12} + \frac{15}{146} a^{11} + \frac{47}{219} a^{10} + \frac{97}{219} a^{9} - \frac{26}{73} a^{8} - \frac{13}{219} a^{7} + \frac{19}{219} a^{6} - \frac{13}{146} a^{5} - \frac{31}{219} a^{4} + \frac{70}{219} a^{3} + \frac{32}{73} a^{2} + \frac{45}{146} a - \frac{49}{438}$, $\frac{1}{438} a^{14} - \frac{11}{219} a^{12} + \frac{23}{146} a^{11} + \frac{85}{438} a^{10} + \frac{85}{438} a^{9} + \frac{2}{73} a^{8} + \frac{83}{219} a^{7} + \frac{47}{219} a^{6} + \frac{19}{146} a^{5} - \frac{77}{438} a^{4} + \frac{25}{438} a^{3} + \frac{77}{438} a^{2} + \frac{11}{219} a - \frac{104}{219}$, $\frac{1}{774231138} a^{15} + \frac{298268}{387115569} a^{14} - \frac{316441}{387115569} a^{13} + \frac{7961905}{258077046} a^{12} - \frac{79773883}{774231138} a^{11} - \frac{192811231}{774231138} a^{10} - \frac{8651677}{387115569} a^{9} + \frac{42958753}{387115569} a^{8} - \frac{1226456}{5302953} a^{7} + \frac{250324669}{774231138} a^{6} + \frac{111451919}{774231138} a^{5} + \frac{243892925}{774231138} a^{4} + \frac{32399169}{86025682} a^{3} + \frac{22593161}{387115569} a^{2} - \frac{88460758}{387115569} a + \frac{116312120}{387115569}$
Class group and class number
$C_{3}$, which has order $3$
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{8524}{18177} a^{15} + \frac{32041}{36354} a^{14} - \frac{56209}{36354} a^{13} - \frac{28723}{36354} a^{12} + \frac{469363}{36354} a^{11} - \frac{233561}{18177} a^{10} + \frac{350407}{36354} a^{9} + \frac{625892}{18177} a^{8} - \frac{2294509}{36354} a^{7} - \frac{498856}{18177} a^{6} - \frac{3128831}{36354} a^{5} - \frac{3112799}{18177} a^{4} - \frac{1185733}{12118} a^{3} - \frac{34337}{12118} a^{2} + \frac{53113}{6059} a + \frac{61199}{36354} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 6987.90665691 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_8:C_2^2$ (as 16T45):
| A solvable group of order 32 |
| The 11 conjugacy class representatives for $C_8:C_2^2$ |
| Character table for $C_8:C_2^2$ |
Intermediate fields
| \(\Q(\sqrt{69}) \), \(\Q(\sqrt{-23}) \), \(\Q(\sqrt{-3}) \), 4.0.6348.1, 4.0.6348.2, \(\Q(\sqrt{-3}, \sqrt{-23})\), 8.0.362673936.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 8 siblings: | data not computed |
| Degree 16 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.4.4.2 | $x^{4} - x^{2} + 5$ | $2$ | $2$ | $4$ | $C_4$ | $[2]^{2}$ |
| 2.4.0.1 | $x^{4} - x + 1$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 2.8.8.1 | $x^{8} + 28 x^{4} + 144$ | $2$ | $4$ | $8$ | $C_4\times C_2$ | $[2]^{4}$ | |
| $3$ | 3.4.3.1 | $x^{4} + 3$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ |
| 3.4.3.1 | $x^{4} + 3$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ | |
| 3.8.6.2 | $x^{8} + 4 x^{7} + 14 x^{6} + 28 x^{5} + 43 x^{4} + 44 x^{3} + 110 x^{2} + 92 x + 22$ | $4$ | $2$ | $6$ | $D_4$ | $[\ ]_{4}^{2}$ | |
| $23$ | 23.4.2.1 | $x^{4} + 299 x^{2} + 25921$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 23.4.2.1 | $x^{4} + 299 x^{2} + 25921$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 23.4.2.1 | $x^{4} + 299 x^{2} + 25921$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 23.4.2.1 | $x^{4} + 299 x^{2} + 25921$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |