Normalized defining polynomial
\( x^{16} - x^{15} + 3 x^{14} + 7 x^{13} + 93 x^{12} - 18 x^{11} + 1061 x^{10} + 426 x^{9} + 4268 x^{8} + 3118 x^{7} + 8099 x^{6} + 7574 x^{5} + 3478 x^{4} + 556 x^{3} + 67 x^{2} + 8 x + 1 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1700350026389931884765625=3^{8}\cdot 5^{12}\cdot 101^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $32.69$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 5, 101$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{3} a^{12} + \frac{1}{3} a^{10} + \frac{1}{3} a^{9} + \frac{1}{3} a^{8} + \frac{1}{3} a^{7} - \frac{1}{3} a^{6} + \frac{1}{3} a^{5} - \frac{1}{3} a^{3} + \frac{1}{3} a^{2} + \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{3} a^{13} + \frac{1}{3} a^{11} + \frac{1}{3} a^{10} + \frac{1}{3} a^{9} + \frac{1}{3} a^{8} - \frac{1}{3} a^{7} + \frac{1}{3} a^{6} - \frac{1}{3} a^{4} + \frac{1}{3} a^{3} + \frac{1}{3} a^{2} + \frac{1}{3} a$, $\frac{1}{33} a^{14} - \frac{1}{33} a^{13} + \frac{5}{33} a^{12} - \frac{2}{11} a^{11} + \frac{4}{33} a^{10} - \frac{8}{33} a^{9} + \frac{2}{33} a^{8} + \frac{1}{11} a^{7} + \frac{4}{33} a^{6} + \frac{1}{3} a^{4} - \frac{16}{33} a^{3} + \frac{13}{33} a^{2} - \frac{5}{11} a + \frac{16}{33}$, $\frac{1}{2278613091009978688019043} a^{15} + \frac{19433256861483341269295}{2278613091009978688019043} a^{14} + \frac{11252362321422423125640}{759537697003326229339681} a^{13} - \frac{7140169103179009787897}{2278613091009978688019043} a^{12} + \frac{19107835898901170837474}{2278613091009978688019043} a^{11} - \frac{17290257056203910431383}{69048881545756929939971} a^{10} - \frac{762002708233022292678656}{2278613091009978688019043} a^{9} - \frac{47362477011606769554304}{2278613091009978688019043} a^{8} - \frac{976699569613053716795003}{2278613091009978688019043} a^{7} + \frac{251231432965132766520461}{759537697003326229339681} a^{6} + \frac{26863080375503083613618}{69048881545756929939971} a^{5} + \frac{182941356911094984165970}{2278613091009978688019043} a^{4} + \frac{142529394806286447127171}{2278613091009978688019043} a^{3} + \frac{23334484900149377168482}{207146644637270789819913} a^{2} + \frac{135886939251430682658738}{759537697003326229339681} a - \frac{949036433782108764470126}{2278613091009978688019043}$
Class group and class number
$C_{2}\times C_{12}$, which has order $24$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{18000043627973370116545}{2278613091009978688019043} a^{15} + \frac{2827675218500170088339}{207146644637270789819913} a^{14} - \frac{74329490472383727266659}{2278613091009978688019043} a^{13} - \frac{26306263502125640064905}{759537697003326229339681} a^{12} - \frac{534856202508869444073573}{759537697003326229339681} a^{11} + \frac{498199398824692432111807}{759537697003326229339681} a^{10} - \frac{20004148786762565255639998}{2278613091009978688019043} a^{9} + \frac{6418630706892487690350478}{2278613091009978688019043} a^{8} - \frac{78919731788988231664799138}{2278613091009978688019043} a^{7} - \frac{2637490477824868946004302}{2278613091009978688019043} a^{6} - \frac{12339057071167873168539802}{207146644637270789819913} a^{5} - \frac{16546667198786974897483344}{759537697003326229339681} a^{4} - \frac{7051557556047561353170048}{759537697003326229339681} a^{3} - \frac{12921848791000252023507617}{2278613091009978688019043} a^{2} - \frac{5555092455934224333997565}{759537697003326229339681} a - \frac{79135943391822973503779}{759537697003326229339681} \) (order $10$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 50808.1466806 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 32 |
| The 14 conjugacy class representatives for $D_4:C_4$ |
| Character table for $D_4:C_4$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\zeta_{5})\), 4.4.2525.1, 4.0.12625.1, 8.8.52158988125.1, 8.0.1303974703125.1, 8.0.159390625.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 16 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | R | R | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.8.4.2 | $x^{8} - 27 x^{2} + 162$ | $2$ | $4$ | $4$ | $C_8$ | $[\ ]_{2}^{4}$ |
| 3.8.4.2 | $x^{8} - 27 x^{2} + 162$ | $2$ | $4$ | $4$ | $C_8$ | $[\ ]_{2}^{4}$ | |
| $5$ | 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |
| 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| $101$ | $\Q_{101}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{101}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{101}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{101}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 101.2.1.1 | $x^{2} - 101$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 101.2.1.1 | $x^{2} - 101$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 101.2.1.1 | $x^{2} - 101$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 101.2.1.1 | $x^{2} - 101$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 101.2.1.1 | $x^{2} - 101$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 101.2.1.1 | $x^{2} - 101$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |