Normalized defining polynomial
\( x^{16} - 4 x^{15} + 10 x^{14} - 24 x^{13} + 44 x^{12} - 92 x^{11} + 192 x^{10} - 288 x^{9} + 398 x^{8} - 336 x^{7} + 144 x^{6} - 104 x^{5} - 32 x^{4} - 128 x^{3} + 152 x^{2} + 80 x + 68 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(169941440847545368576=2^{36}\cdot 223^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $18.38$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 223$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8}$, $\frac{1}{2} a^{9}$, $\frac{1}{2} a^{10}$, $\frac{1}{2} a^{11}$, $\frac{1}{2} a^{12}$, $\frac{1}{26} a^{13} - \frac{3}{26} a^{12} - \frac{1}{13} a^{11} + \frac{1}{13} a^{10} - \frac{2}{13} a^{9} + \frac{1}{26} a^{8} + \frac{5}{13} a^{7} + \frac{4}{13} a^{6} - \frac{4}{13} a^{5} + \frac{5}{13} a^{4} + \frac{3}{13} a^{2} + \frac{5}{13} a + \frac{5}{13}$, $\frac{1}{338} a^{14} + \frac{1}{338} a^{13} + \frac{51}{338} a^{12} - \frac{71}{338} a^{11} + \frac{2}{169} a^{10} + \frac{38}{169} a^{9} + \frac{20}{169} a^{8} - \frac{28}{169} a^{7} - \frac{66}{169} a^{6} + \frac{15}{169} a^{5} - \frac{32}{169} a^{4} - \frac{10}{169} a^{3} - \frac{35}{169} a^{2} + \frac{77}{169} a + \frac{46}{169}$, $\frac{1}{291429541026} a^{15} + \frac{39890854}{48571590171} a^{14} - \frac{2571783419}{291429541026} a^{13} + \frac{7505413664}{145714770513} a^{12} + \frac{2439866811}{32381060114} a^{11} - \frac{1906100507}{291429541026} a^{10} + \frac{5601616273}{291429541026} a^{9} + \frac{891813103}{22417657002} a^{8} - \frac{15153702307}{48571590171} a^{7} + \frac{7006034354}{16190530057} a^{6} + \frac{5636030419}{16190530057} a^{5} + \frac{54943640588}{145714770513} a^{4} + \frac{30746194924}{145714770513} a^{3} - \frac{7387920353}{48571590171} a^{2} - \frac{63665754734}{145714770513} a + \frac{2193612298}{8571457089}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{29520497}{1502214129} a^{15} + \frac{24831134}{500738043} a^{14} - \frac{156251399}{1502214129} a^{13} + \frac{380678254}{1502214129} a^{12} - \frac{58854436}{166912681} a^{11} + \frac{2837057471}{3004428258} a^{10} - \frac{2673037793}{1502214129} a^{9} + \frac{203905444}{115554933} a^{8} - \frac{1271881913}{500738043} a^{7} - \frac{90758167}{166912681} a^{6} + \frac{123224614}{166912681} a^{5} + \frac{47368846}{1502214129} a^{4} + \frac{1272638045}{1502214129} a^{3} + \frac{1784058437}{500738043} a^{2} + \frac{834872912}{1502214129} a + \frac{6149969}{88365537} \) (order $8$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 16318.239899 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_2^2:S_4:C_2$ (as 16T724):
| A solvable group of order 384 |
| The 28 conjugacy class representatives for $C_2\times C_2^2:S_4:C_2$ |
| Character table for $C_2\times C_2^2:S_4:C_2$ is not computed |
Intermediate fields
| \(\Q(\sqrt{-1}) \), \(\Q(\sqrt{2}) \), \(\Q(\sqrt{-2}) \), \(\Q(\zeta_{8})\), 8.0.3259039744.8 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 12 siblings: | data not computed |
| Degree 16 siblings: | data not computed |
| Degree 24 siblings: | data not computed |
| Degree 32 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/17.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/41.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 223 | Data not computed | ||||||