Normalized defining polynomial
\( x^{16} - 12 x^{14} + 118 x^{12} - 508 x^{10} + 1250 x^{8} - 1972 x^{6} + 2006 x^{4} - 1156 x^{2} + 289 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1698530418031713058816=2^{46}\cdot 17^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $21.23$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 17$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8} - \frac{1}{2}$, $\frac{1}{2} a^{9} - \frac{1}{2} a$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{2}$, $\frac{1}{4} a^{11} - \frac{1}{4} a^{10} - \frac{1}{4} a^{9} - \frac{1}{4} a^{8} + \frac{1}{4} a^{3} - \frac{1}{4} a^{2} - \frac{1}{4} a - \frac{1}{4}$, $\frac{1}{68} a^{12} - \frac{3}{17} a^{10} - \frac{1}{68} a^{8} - \frac{8}{17} a^{6} + \frac{9}{68} a^{4} - \frac{1}{4}$, $\frac{1}{68} a^{13} + \frac{5}{68} a^{11} - \frac{1}{4} a^{10} + \frac{4}{17} a^{9} - \frac{1}{4} a^{8} - \frac{8}{17} a^{7} + \frac{9}{68} a^{5} + \frac{1}{4} a^{3} - \frac{1}{4} a^{2} - \frac{1}{4}$, $\frac{1}{56804072} a^{14} - \frac{314383}{56804072} a^{12} - \frac{9528485}{56804072} a^{10} + \frac{13521571}{56804072} a^{8} - \frac{24138271}{56804072} a^{6} + \frac{23337401}{56804072} a^{4} + \frac{668635}{3341416} a^{2} - \frac{997341}{3341416}$, $\frac{1}{56804072} a^{15} - \frac{314383}{56804072} a^{13} + \frac{4672533}{56804072} a^{11} - \frac{1}{4} a^{10} - \frac{679447}{56804072} a^{9} - \frac{1}{4} a^{8} - \frac{24138271}{56804072} a^{7} + \frac{23337401}{56804072} a^{5} + \frac{1503989}{3341416} a^{3} - \frac{1}{4} a^{2} + \frac{1508721}{3341416} a - \frac{1}{4}$
Class group and class number
$C_{2}$, which has order $2$
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{1001829}{56804072} a^{14} - \frac{11170719}{56804072} a^{12} + \frac{108601599}{56804072} a^{10} - \frac{415001893}{56804072} a^{8} + \frac{884600213}{56804072} a^{6} - \frac{1154248343}{56804072} a^{4} + \frac{54389135}{3341416} a^{2} - \frac{16595077}{3341416} \) (order $8$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 47472.0159006 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$(C_2\times D_4).C_2^3$ (as 16T293):
| A solvable group of order 128 |
| The 26 conjugacy class representatives for $(C_2\times D_4).C_2^3$ |
| Character table for $(C_2\times D_4).C_2^3$ is not computed |
Intermediate fields
| \(\Q(\sqrt{2}) \), \(\Q(\sqrt{-1}) \), \(\Q(\sqrt{-2}) \), 4.0.1088.2, 4.4.4352.1, \(\Q(\zeta_{8})\), 8.0.18939904.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{4}$ | R | ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.22.100 | $x^{8} + 4 x^{7} + 4 x^{6} + 2 x^{4} + 12 x^{2} + 2$ | $8$ | $1$ | $22$ | $Q_8:C_2$ | $[2, 3, 7/2]^{2}$ |
| 2.8.24.20 | $x^{8} + 10 x^{4} + 8 x^{3} + 4 x^{2} + 8 x + 2$ | $8$ | $1$ | $24$ | $Q_8:C_2$ | $[2, 3, 4]^{2}$ | |
| $17$ | 17.4.3.3 | $x^{4} + 51$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 17.4.3.3 | $x^{4} + 51$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 17.4.0.1 | $x^{4} - x + 11$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 17.4.0.1 | $x^{4} - x + 11$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |