/* Data is in the following format Note, if the class group has not been computed, it, the class number, the fundamental units, regulator and whether grh was assumed are all 0. [polynomial, degree, t-number of Galois group, signature [r,s], discriminant, list of ramifying primes, integral basis as polynomials in a, 1 if it is a cm field otherwise 0, class number, class group structure, 1 if grh was assumed and 0 if not, fundamental units, regulator, list of subfields each as a pair [polynomial, number of subfields isomorphic to one defined by this polynomial] ] */ [x^16 - 4*x^15 + 9*x^14 - 10*x^13 + 5*x^12 - 6*x^11 + 5*x^10 + 19*x^9 - 33*x^8 + 6*x^7 + 14*x^6 - 9*x^5 + 21*x^4 - 31*x^3 + 18*x^2 - 5*x + 1, 16, 42, [0, 8], 169561224228515625, [3, 5, 11], [1, a, a^2, a^3, a^4, a^5, a^6, a^7, a^8, a^9, 1/3*a^10 - 1/3*a^7 - 1/3*a^6 - 1/3*a^5 - 1/3*a^4 - 1/3*a^3 + 1/3*a^2 - 1/3*a - 1/3, 1/3*a^11 - 1/3*a^8 - 1/3*a^7 - 1/3*a^6 - 1/3*a^5 - 1/3*a^4 + 1/3*a^3 - 1/3*a^2 - 1/3*a, 1/3*a^12 - 1/3*a^9 - 1/3*a^8 - 1/3*a^7 - 1/3*a^6 - 1/3*a^5 + 1/3*a^4 - 1/3*a^3 - 1/3*a^2, 1/3*a^13 - 1/3*a^9 - 1/3*a^8 + 1/3*a^7 + 1/3*a^6 + 1/3*a^4 + 1/3*a^3 + 1/3*a^2 - 1/3*a - 1/3, 1/9*a^14 - 1/9*a^12 + 1/9*a^11 + 1/9*a^10 - 1/3*a^9 + 1/9*a^8 + 2/9*a^7 + 4/9*a^6 - 1/9*a^5 + 1/3*a^4 + 4/9*a^3 + 4/9*a^2 - 4/9*a + 4/9, 1/5235327*a^15 - 252806/5235327*a^14 + 480623/5235327*a^13 + 252823/1745109*a^12 - 373867/5235327*a^11 - 778112/5235327*a^10 - 2161760/5235327*a^9 - 360967/1745109*a^8 - 315196/1745109*a^7 - 373/8193*a^6 + 1219865/5235327*a^5 - 865022/5235327*a^4 - 317125/5235327*a^3 + 423956/1745109*a^2 - 473768/1745109*a - 723752/5235327], 0, 1, [], 0, [ (906400)/(5235327)*a^(15) - (3566264)/(5235327)*a^(14) + (6872639)/(5235327)*a^(13) - (1966244)/(1745109)*a^(12) - (802744)/(5235327)*a^(11) - (3639995)/(5235327)*a^(10) + (4827181)/(5235327)*a^(9) + (7670798)/(1745109)*a^(8) - (8258743)/(1745109)*a^(7) - (8301)/(2731)*a^(6) + (15985562)/(5235327)*a^(5) + (4081810)/(5235327)*a^(4) + (20980025)/(5235327)*a^(3) - (7427242)/(1745109)*a^(2) - (1435055)/(1745109)*a - (3143501)/(5235327) , (3748139)/(5235327)*a^(15) - (12521116)/(5235327)*a^(14) + (25123603)/(5235327)*a^(13) - (6750149)/(1745109)*a^(12) + (4246021)/(5235327)*a^(11) - (20177836)/(5235327)*a^(10) + (6004976)/(5235327)*a^(9) + (25414871)/(1745109)*a^(8) - (2602297)/(193901)*a^(7) - (140800)/(24579)*a^(6) + (31602502)/(5235327)*a^(5) - (7369375)/(5235327)*a^(4) + (72774580)/(5235327)*a^(3) - (21346267)/(1745109)*a^(2) + (6153595)/(1745109)*a - (7582219)/(5235327) , (860995)/(5235327)*a^(15) - (1328321)/(5235327)*a^(14) + (1538042)/(5235327)*a^(13) + (344953)/(581703)*a^(12) - (2373664)/(5235327)*a^(11) - (5523152)/(5235327)*a^(10) - (6331487)/(5235327)*a^(9) + (1597664)/(581703)*a^(8) + (5149798)/(1745109)*a^(7) - (82231)/(24579)*a^(6) - (14800471)/(5235327)*a^(5) - (252761)/(5235327)*a^(4) + (13584152)/(5235327)*a^(3) + (639058)/(193901)*a^(2) - (394018)/(581703)*a - (3913223)/(5235327) , (1231802)/(5235327)*a^(15) - (4451125)/(5235327)*a^(14) + (9379723)/(5235327)*a^(13) - (3111688)/(1745109)*a^(12) + (4146766)/(5235327)*a^(11) - (8466427)/(5235327)*a^(10) + (3276689)/(5235327)*a^(9) + (8665339)/(1745109)*a^(8) - (9539684)/(1745109)*a^(7) - (479)/(2731)*a^(6) + (4297171)/(5235327)*a^(5) - (5431315)/(5235327)*a^(4) + (30126817)/(5235327)*a^(3) - (9725519)/(1745109)*a^(2) + (4001408)/(1745109)*a - (7542037)/(5235327) , (3132173)/(5235327)*a^(15) - (10441699)/(5235327)*a^(14) + (21477763)/(5235327)*a^(13) - (5921819)/(1745109)*a^(12) + (5532685)/(5235327)*a^(11) - (16848058)/(5235327)*a^(10) + (6144866)/(5235327)*a^(9) + (20404382)/(1745109)*a^(8) - (2316612)/(193901)*a^(7) - (86392)/(24579)*a^(6) + (27820042)/(5235327)*a^(5) - (8633548)/(5235327)*a^(4) + (54765325)/(5235327)*a^(3) - (19899973)/(1745109)*a^(2) + (8771176)/(1745109)*a - (4757818)/(5235327) , (1286407)/(1745109)*a^(15) - (4722763)/(1745109)*a^(14) + (10267793)/(1745109)*a^(13) - (10195018)/(1745109)*a^(12) + (488202)/(193901)*a^(11) - (6970453)/(1745109)*a^(10) + (4198273)/(1745109)*a^(9) + (24102961)/(1745109)*a^(8) - (33789829)/(1745109)*a^(7) + (18305)/(24579)*a^(6) + (15461224)/(1745109)*a^(5) - (10327649)/(1745109)*a^(4) + (8267857)/(581703)*a^(3) - (30284597)/(1745109)*a^(2) + (17361089)/(1745109)*a - (4403563)/(1745109) , (1039367)/(5235327)*a^(15) - (4713811)/(5235327)*a^(14) + (11469718)/(5235327)*a^(13) - (4763090)/(1745109)*a^(12) + (8287792)/(5235327)*a^(11) - (5162719)/(5235327)*a^(10) + (7714196)/(5235327)*a^(9) + (5928932)/(1745109)*a^(8) - (5445824)/(581703)*a^(7) + (97613)/(24579)*a^(6) + (26181151)/(5235327)*a^(5) - (17850691)/(5235327)*a^(4) + (18562105)/(5235327)*a^(3) - (14700154)/(1745109)*a^(2) + (10991338)/(1745109)*a - (4821583)/(5235327) ], 93.9208233904, [[x^2 - x - 1, 1], [x^2 - x + 3, 1], [x^2 - x + 14, 1], [x^4 - x^3 + 2*x - 1, 2], [x^4 - x^3 + x^2 + x + 1, 2], [x^4 + 3*x^2 + 16, 1], [x^8 - x^7 + x^6 + 2*x^5 - 3*x^4 - 2*x^3 + x^2 + x + 1, 1], [x^8 - 3*x^7 + 3*x^6 + 6*x^5 - 14*x^4 + 10*x^3 + 10*x^2 - 13*x + 9, 1], [x^8 - 3*x^7 + 9*x^6 - 13*x^5 + 18*x^4 - 11*x^3 + 11*x^2 - 4*x + 1, 1]]]