Normalized defining polynomial
\( x^{16} - 4 x^{15} + 9 x^{14} - 10 x^{13} + 5 x^{12} - 6 x^{11} + 5 x^{10} + 19 x^{9} - 33 x^{8} + \cdots + 1 \)
Invariants
| Degree: | $16$ |
| |
| Signature: | $[0, 8]$ |
| |
| Discriminant: |
\(169561224228515625\)
\(\medspace = 3^{4}\cdot 5^{10}\cdot 11^{8}\)
|
| |
| Root discriminant: | \(11.94\) |
| |
| Galois root discriminant: | $3^{1/2}5^{3/4}11^{1/2}\approx 19.208102881010017$ | ||
| Ramified primes: |
\(3\), \(5\), \(11\)
|
| |
| Discriminant root field: | \(\Q\) | ||
| $\Aut(K/\Q)$: | $C_2\times C_4$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| Maximal CM subfield: | \(\Q(\sqrt{5}, \sqrt{-11})\) | ||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{3}a^{10}-\frac{1}{3}a^{7}-\frac{1}{3}a^{6}-\frac{1}{3}a^{5}-\frac{1}{3}a^{4}-\frac{1}{3}a^{3}+\frac{1}{3}a^{2}-\frac{1}{3}a-\frac{1}{3}$, $\frac{1}{3}a^{11}-\frac{1}{3}a^{8}-\frac{1}{3}a^{7}-\frac{1}{3}a^{6}-\frac{1}{3}a^{5}-\frac{1}{3}a^{4}+\frac{1}{3}a^{3}-\frac{1}{3}a^{2}-\frac{1}{3}a$, $\frac{1}{3}a^{12}-\frac{1}{3}a^{9}-\frac{1}{3}a^{8}-\frac{1}{3}a^{7}-\frac{1}{3}a^{6}-\frac{1}{3}a^{5}+\frac{1}{3}a^{4}-\frac{1}{3}a^{3}-\frac{1}{3}a^{2}$, $\frac{1}{3}a^{13}-\frac{1}{3}a^{9}-\frac{1}{3}a^{8}+\frac{1}{3}a^{7}+\frac{1}{3}a^{6}+\frac{1}{3}a^{4}+\frac{1}{3}a^{3}+\frac{1}{3}a^{2}-\frac{1}{3}a-\frac{1}{3}$, $\frac{1}{9}a^{14}-\frac{1}{9}a^{12}+\frac{1}{9}a^{11}+\frac{1}{9}a^{10}-\frac{1}{3}a^{9}+\frac{1}{9}a^{8}+\frac{2}{9}a^{7}+\frac{4}{9}a^{6}-\frac{1}{9}a^{5}+\frac{1}{3}a^{4}+\frac{4}{9}a^{3}+\frac{4}{9}a^{2}-\frac{4}{9}a+\frac{4}{9}$, $\frac{1}{5235327}a^{15}-\frac{252806}{5235327}a^{14}+\frac{480623}{5235327}a^{13}+\frac{252823}{1745109}a^{12}-\frac{373867}{5235327}a^{11}-\frac{778112}{5235327}a^{10}-\frac{2161760}{5235327}a^{9}-\frac{360967}{1745109}a^{8}-\frac{315196}{1745109}a^{7}-\frac{373}{8193}a^{6}+\frac{1219865}{5235327}a^{5}-\frac{865022}{5235327}a^{4}-\frac{317125}{5235327}a^{3}+\frac{423956}{1745109}a^{2}-\frac{473768}{1745109}a-\frac{723752}{5235327}$
| Monogenic: | No | |
| Index: | Not computed | |
| Inessential primes: | $3$ |
Class group and class number
| Ideal class group: | Trivial group, which has order $1$ |
| |
| Narrow class group: | Trivial group, which has order $1$ |
|
Unit group
| Rank: | $7$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$\frac{906400}{5235327}a^{15}-\frac{3566264}{5235327}a^{14}+\frac{6872639}{5235327}a^{13}-\frac{1966244}{1745109}a^{12}-\frac{802744}{5235327}a^{11}-\frac{3639995}{5235327}a^{10}+\frac{4827181}{5235327}a^{9}+\frac{7670798}{1745109}a^{8}-\frac{8258743}{1745109}a^{7}-\frac{8301}{2731}a^{6}+\frac{15985562}{5235327}a^{5}+\frac{4081810}{5235327}a^{4}+\frac{20980025}{5235327}a^{3}-\frac{7427242}{1745109}a^{2}-\frac{1435055}{1745109}a-\frac{3143501}{5235327}$, $\frac{3748139}{5235327}a^{15}-\frac{12521116}{5235327}a^{14}+\frac{25123603}{5235327}a^{13}-\frac{6750149}{1745109}a^{12}+\frac{4246021}{5235327}a^{11}-\frac{20177836}{5235327}a^{10}+\frac{6004976}{5235327}a^{9}+\frac{25414871}{1745109}a^{8}-\frac{2602297}{193901}a^{7}-\frac{140800}{24579}a^{6}+\frac{31602502}{5235327}a^{5}-\frac{7369375}{5235327}a^{4}+\frac{72774580}{5235327}a^{3}-\frac{21346267}{1745109}a^{2}+\frac{6153595}{1745109}a-\frac{7582219}{5235327}$, $\frac{860995}{5235327}a^{15}-\frac{1328321}{5235327}a^{14}+\frac{1538042}{5235327}a^{13}+\frac{344953}{581703}a^{12}-\frac{2373664}{5235327}a^{11}-\frac{5523152}{5235327}a^{10}-\frac{6331487}{5235327}a^{9}+\frac{1597664}{581703}a^{8}+\frac{5149798}{1745109}a^{7}-\frac{82231}{24579}a^{6}-\frac{14800471}{5235327}a^{5}-\frac{252761}{5235327}a^{4}+\frac{13584152}{5235327}a^{3}+\frac{639058}{193901}a^{2}-\frac{394018}{581703}a-\frac{3913223}{5235327}$, $\frac{1231802}{5235327}a^{15}-\frac{4451125}{5235327}a^{14}+\frac{9379723}{5235327}a^{13}-\frac{3111688}{1745109}a^{12}+\frac{4146766}{5235327}a^{11}-\frac{8466427}{5235327}a^{10}+\frac{3276689}{5235327}a^{9}+\frac{8665339}{1745109}a^{8}-\frac{9539684}{1745109}a^{7}-\frac{479}{2731}a^{6}+\frac{4297171}{5235327}a^{5}-\frac{5431315}{5235327}a^{4}+\frac{30126817}{5235327}a^{3}-\frac{9725519}{1745109}a^{2}+\frac{4001408}{1745109}a-\frac{7542037}{5235327}$, $\frac{3132173}{5235327}a^{15}-\frac{10441699}{5235327}a^{14}+\frac{21477763}{5235327}a^{13}-\frac{5921819}{1745109}a^{12}+\frac{5532685}{5235327}a^{11}-\frac{16848058}{5235327}a^{10}+\frac{6144866}{5235327}a^{9}+\frac{20404382}{1745109}a^{8}-\frac{2316612}{193901}a^{7}-\frac{86392}{24579}a^{6}+\frac{27820042}{5235327}a^{5}-\frac{8633548}{5235327}a^{4}+\frac{54765325}{5235327}a^{3}-\frac{19899973}{1745109}a^{2}+\frac{8771176}{1745109}a-\frac{4757818}{5235327}$, $\frac{1286407}{1745109}a^{15}-\frac{4722763}{1745109}a^{14}+\frac{10267793}{1745109}a^{13}-\frac{10195018}{1745109}a^{12}+\frac{488202}{193901}a^{11}-\frac{6970453}{1745109}a^{10}+\frac{4198273}{1745109}a^{9}+\frac{24102961}{1745109}a^{8}-\frac{33789829}{1745109}a^{7}+\frac{18305}{24579}a^{6}+\frac{15461224}{1745109}a^{5}-\frac{10327649}{1745109}a^{4}+\frac{8267857}{581703}a^{3}-\frac{30284597}{1745109}a^{2}+\frac{17361089}{1745109}a-\frac{4403563}{1745109}$, $\frac{1039367}{5235327}a^{15}-\frac{4713811}{5235327}a^{14}+\frac{11469718}{5235327}a^{13}-\frac{4763090}{1745109}a^{12}+\frac{8287792}{5235327}a^{11}-\frac{5162719}{5235327}a^{10}+\frac{7714196}{5235327}a^{9}+\frac{5928932}{1745109}a^{8}-\frac{5445824}{581703}a^{7}+\frac{97613}{24579}a^{6}+\frac{26181151}{5235327}a^{5}-\frac{17850691}{5235327}a^{4}+\frac{18562105}{5235327}a^{3}-\frac{14700154}{1745109}a^{2}+\frac{10991338}{1745109}a-\frac{4821583}{5235327}$
|
| |
| Regulator: | \( 93.9208233904 \) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{8}\cdot 93.9208233904 \cdot 1}{2\cdot\sqrt{169561224228515625}}\cr\approx \mathstrut & 0.277017732940 \end{aligned}\]
Galois group
$C_4\wr C_2$ (as 16T42):
| A solvable group of order 32 |
| The 14 conjugacy class representatives for $C_4\wr C_2$ |
| Character table for $C_4\wr C_2$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\sqrt{-11}) \), \(\Q(\sqrt{-55}) \), 4.2.275.1 x2, 4.0.605.1 x2, \(\Q(\sqrt{5}, \sqrt{-11})\), 8.0.16471125.2, 8.0.411778125.2, 8.0.9150625.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | deg 32 |
| Degree 8 siblings: | 8.0.16471125.2, 8.0.411778125.2 |
| Degree 16 sibling: | 16.4.2837698174072265625.2 |
| Minimal sibling: | 8.0.16471125.2 |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/padicField/2.8.0.1}{8} }^{2}$ | R | R | ${\href{/padicField/7.8.0.1}{8} }^{2}$ | R | ${\href{/padicField/13.8.0.1}{8} }^{2}$ | ${\href{/padicField/17.8.0.1}{8} }^{2}$ | ${\href{/padicField/19.4.0.1}{4} }^{4}$ | ${\href{/padicField/23.4.0.1}{4} }^{2}{,}\,{\href{/padicField/23.2.0.1}{2} }^{4}$ | ${\href{/padicField/29.2.0.1}{2} }^{8}$ | ${\href{/padicField/31.4.0.1}{4} }^{4}$ | ${\href{/padicField/37.4.0.1}{4} }^{2}{,}\,{\href{/padicField/37.2.0.1}{2} }^{4}$ | ${\href{/padicField/41.4.0.1}{4} }^{4}$ | ${\href{/padicField/43.8.0.1}{8} }^{2}$ | ${\href{/padicField/47.4.0.1}{4} }^{2}{,}\,{\href{/padicField/47.2.0.1}{2} }^{4}$ | ${\href{/padicField/53.4.0.1}{4} }^{2}{,}\,{\href{/padicField/53.2.0.1}{2} }^{4}$ | ${\href{/padicField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(3\)
| 3.2.1.0a1.1 | $x^{2} + 2 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ |
| 3.2.1.0a1.1 | $x^{2} + 2 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | |
| 3.2.1.0a1.1 | $x^{2} + 2 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | |
| 3.2.1.0a1.1 | $x^{2} + 2 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | |
| 3.2.2.2a1.1 | $x^{4} + 4 x^{3} + 8 x^{2} + 11 x + 4$ | $2$ | $2$ | $2$ | $C_4$ | $$[\ ]_{2}^{2}$$ | |
| 3.2.2.2a1.1 | $x^{4} + 4 x^{3} + 8 x^{2} + 11 x + 4$ | $2$ | $2$ | $2$ | $C_4$ | $$[\ ]_{2}^{2}$$ | |
|
\(5\)
| 5.4.2.4a1.2 | $x^{8} + 8 x^{6} + 8 x^{5} + 20 x^{4} + 32 x^{3} + 32 x^{2} + 16 x + 9$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $$[\ ]_{2}^{4}$$ |
| 5.2.4.6a1.3 | $x^{8} + 16 x^{7} + 104 x^{6} + 352 x^{5} + 664 x^{4} + 704 x^{3} + 416 x^{2} + 133 x + 31$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $$[\ ]_{4}^{2}$$ | |
|
\(11\)
| 11.4.2.4a1.2 | $x^{8} + 16 x^{6} + 20 x^{5} + 68 x^{4} + 160 x^{3} + 132 x^{2} + 40 x + 15$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $$[\ ]_{2}^{4}$$ |
| 11.4.2.4a1.2 | $x^{8} + 16 x^{6} + 20 x^{5} + 68 x^{4} + 160 x^{3} + 132 x^{2} + 40 x + 15$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $$[\ ]_{2}^{4}$$ |