Normalized defining polynomial
\( x^{16} - 8 x^{14} - 32 x^{13} - 3 x^{12} + 192 x^{11} + 514 x^{10} + 144 x^{9} - 1360 x^{8} - 4224 x^{7} - 4088 x^{6} + 2564 x^{5} + 15492 x^{4} + 22072 x^{3} + 26872 x^{2} + 7184 x + 2911 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1693912662016000000000000=2^{32}\cdot 5^{12}\cdot 31^{2}\cdot 41^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $32.68$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 31, 41$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{1524892163270495571864480590371} a^{15} - \frac{709592134689345915662308970168}{1524892163270495571864480590371} a^{14} + \frac{454434478493254319350874151334}{1524892163270495571864480590371} a^{13} + \frac{260385480491331263122777862206}{1524892163270495571864480590371} a^{12} + \frac{169663731085623886652026618510}{1524892163270495571864480590371} a^{11} - \frac{184024725370473669911434971075}{1524892163270495571864480590371} a^{10} + \frac{346539338549875286425240458711}{1524892163270495571864480590371} a^{9} + \frac{120072376873219475610385667704}{1524892163270495571864480590371} a^{8} + \frac{349595384404083809888238160434}{1524892163270495571864480590371} a^{7} + \frac{275738154748818617102131532595}{1524892163270495571864480590371} a^{6} + \frac{677981519519411409798749672320}{1524892163270495571864480590371} a^{5} + \frac{641941589348866567445045510753}{1524892163270495571864480590371} a^{4} - \frac{609278190917838207697904348090}{1524892163270495571864480590371} a^{3} + \frac{1077270705755172535814387935}{37192491787085257850353185131} a^{2} + \frac{102874011556446094458886759061}{1524892163270495571864480590371} a - \frac{6636473573838622070168668069}{37192491787085257850353185131}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{120399321013845297938624}{686579091972307776616155151} a^{15} + \frac{83403199279560875694912}{686579091972307776616155151} a^{14} + \frac{1001144896718085868756196}{686579091972307776616155151} a^{13} + \frac{3073010468405636390123851}{686579091972307776616155151} a^{12} - \frac{2500005366398853417717080}{686579091972307776616155151} a^{11} - \frac{23887922607190298135675218}{686579091972307776616155151} a^{10} - \frac{41592934236041683236159244}{686579091972307776616155151} a^{9} + \frac{29899460613630500209645149}{686579091972307776616155151} a^{8} + \frac{170947167150850891084165072}{686579091972307776616155151} a^{7} + \frac{332342605963645827777097732}{686579091972307776616155151} a^{6} + \frac{104660820285829389238680028}{686579091972307776616155151} a^{5} - \frac{544710511467048437208057001}{686579091972307776616155151} a^{4} - \frac{1297488186240623438321116120}{686579091972307776616155151} a^{3} - \frac{29178917492664806038453718}{16745831511519701868686711} a^{2} - \frac{1482066513667932346650106040}{686579091972307776616155151} a + \frac{7548475222369627289401929}{16745831511519701868686711} \) (order $10$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 698642.993125 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 512 |
| The 62 conjugacy class representatives for t16n797 are not computed |
| Character table for t16n797 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\sqrt{2}) \), \(\Q(\sqrt{10}) \), 4.0.8000.2, \(\Q(\zeta_{5})\), \(\Q(\sqrt{2}, \sqrt{5})\), 8.0.64000000.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $5$ | 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |
| 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| 31 | Data not computed | ||||||
| 41 | Data not computed | ||||||