Normalized defining polynomial
\( x^{16} - 4 x^{15} - 10 x^{14} + 74 x^{13} - 122 x^{12} - 118 x^{11} + 1316 x^{10} - 4138 x^{9} + 9760 x^{8} - 15630 x^{7} + 29961 x^{6} - 41377 x^{5} + 55145 x^{4} - 57267 x^{3} + 48763 x^{2} - 17956 x + 4489 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(168215025416361753462674417=17^{13}\cdot 19^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $43.56$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $17, 19$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{7} a^{12} + \frac{1}{7} a^{11} + \frac{2}{7} a^{10} + \frac{2}{7} a^{9} + \frac{3}{7} a^{8} - \frac{1}{7} a^{6} + \frac{2}{7} a^{5} + \frac{1}{7} a^{4} - \frac{3}{7} a^{3} + \frac{3}{7} a^{2} - \frac{2}{7} a - \frac{2}{7}$, $\frac{1}{7} a^{13} + \frac{1}{7} a^{11} + \frac{1}{7} a^{9} - \frac{3}{7} a^{8} - \frac{1}{7} a^{7} + \frac{3}{7} a^{6} - \frac{1}{7} a^{5} + \frac{3}{7} a^{4} - \frac{1}{7} a^{3} + \frac{2}{7} a^{2} + \frac{2}{7}$, $\frac{1}{49} a^{14} + \frac{1}{49} a^{13} + \frac{1}{49} a^{12} - \frac{13}{49} a^{11} + \frac{15}{49} a^{10} - \frac{23}{49} a^{9} + \frac{17}{49} a^{8} + \frac{23}{49} a^{7} - \frac{19}{49} a^{6} - \frac{5}{49} a^{5} - \frac{19}{49} a^{4} + \frac{1}{49} a^{3} + \frac{9}{49} a^{2} + \frac{16}{49} a - \frac{5}{49}$, $\frac{1}{3154745737613069898853529219066227} a^{15} - \frac{15276625598969884329641237900226}{3154745737613069898853529219066227} a^{14} + \frac{73278632594213190729092755833182}{3154745737613069898853529219066227} a^{13} + \frac{164978235466120965356439929224850}{3154745737613069898853529219066227} a^{12} - \frac{406817830570640617689334102182761}{3154745737613069898853529219066227} a^{11} + \frac{444276706259400710419614799464548}{3154745737613069898853529219066227} a^{10} + \frac{569902809305207807485410289328212}{3154745737613069898853529219066227} a^{9} + \frac{563169004742187025196503436177214}{3154745737613069898853529219066227} a^{8} - \frac{178222745667905393209509811163222}{3154745737613069898853529219066227} a^{7} - \frac{322991572935996359380736044747211}{3154745737613069898853529219066227} a^{6} - \frac{500474023812124586530042883291862}{3154745737613069898853529219066227} a^{5} + \frac{609389961077300985513447208431679}{3154745737613069898853529219066227} a^{4} + \frac{567197440872882653016663200510303}{3154745737613069898853529219066227} a^{3} + \frac{1074692115448495593552556894427101}{3154745737613069898853529219066227} a^{2} + \frac{268891314845063627357644277421690}{3154745737613069898853529219066227} a - \frac{6958752624070584335634026067400}{47085757277807013415724316702481}$
Class group and class number
$C_{4}$, which has order $4$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1119942.74184 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_4.D_4:C_4$ (as 16T289):
| A solvable group of order 128 |
| The 44 conjugacy class representatives for $C_4.D_4:C_4$ |
| Character table for $C_4.D_4:C_4$ is not computed |
Intermediate fields
| \(\Q(\sqrt{-19}) \), 4.0.6137.1, 8.0.185037184097.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | $16$ | ${\href{/LocalNumberField/5.8.0.1}{8} }{,}\,{\href{/LocalNumberField/5.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | R | R | ${\href{/LocalNumberField/23.8.0.1}{8} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{4}$ | $16$ | $16$ | $16$ | $16$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $17$ | 17.8.7.5 | $x^{8} + 459$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ |
| 17.8.6.3 | $x^{8} - 17 x^{4} + 867$ | $4$ | $2$ | $6$ | $C_8$ | $[\ ]_{4}^{2}$ | |
| 19 | Data not computed | ||||||